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Abstract

This paper studiesthe datalocality of the work-stealing scheduling
algorithm on hardware-controlled shared-memory machines. We
present lower and upper bounds on the number of cache misses
using work stealing, and introduce a locality-guided work-stealing
algorithm along with experimental validation.

As a lower bound, we show that there is a family of muilti-
threaded computations G, each member of which requires ©(n)
total instructions (work), for which when using work-stealing the
number of cachemisseson one processor isconstant, while even on
two processors the total number of cache missesis ©(rn). Thisim-
pliesthat for general computationsthereisno useful boundrelating
multiprocessor to uninprocessor cache misses. For nested-parallel
computations, however, we show that on P processorsthe expected
additional number of cache missesbeyond those on asingle proces-
sorishboundedby O(C[ 2] P T ), wherem isthe execution time
of aninstructionincurring acachemiss, s isthe steal time, C isthe
size of cache, and 7'~ is the number of nodeson the longest chain
of dependences. Based on this we give strong bounds on the total
running time of nested-parallel computations using work stealing.

For the second part of our results, we present alocality-guided
work stealing algorithm that improves the data locality of multi-
threaded computations by allowing a thread to have an affinity for
aprocessor. Our initial experimentson iterative data-parallel appli-
cations show that the algorithm matches the performance of static-
partitioning under traditional work loads but improves the perform-
ance up to 50% over static partitioning under multiprogrammed
work loads. Furthermore, the locality-guided work stealing im-
proves the performance of work-stealing up to 80%.

1 Introduction

Many of today’s parallel applications use sophisticated, adaptive
algorithms which are best realized with parallel programming sys-
tems that support dynamic, lightweight threads such as Cilk [8],
Nesl [5], Hood [10], and many others[3, 16, 17, 21, 32]. The core
of these systemsis athread scheduler that balancesload among the
processes. In addition to a good load balance, however, good data
locality is essentia in obtaining high performance from modern
paralel systems.
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Severa researches have studied techniquesto improve the data
locality of multithreaded programs. One class of such techniques
is based on software-controlled distribution of data among the lo-
cal memories of a distributed shared memory system [15, 22, 26].
Another class of techniquesis based on hints supplied by the pro-
grammer so that “similar” tasks might be executed on the same
processor [15, 31, 34]. Both these classes of techniquesrely on
the programmer or compiler to determine the data access patterns
in the program, which may be very difficult when the program has
complicated data accesspatterns. Perhapsthe earliest classof tech-
niques wasto attempt to execute threads that are close in the com-
putation graph on the same processor [1, 9, 20, 23, 26, 28]. The
work-stealing algorithm is the most studied of these techniques|9,
11, 19, 20, 24, 36, 37]. Blumofe et al showed that fully-strict com-
putations achieve a provably good data locality [7] when executed
with the work-stealing algorithm on a dag-consistent distributed
shared memory systems. In recent work, Narlikar showed that work
stealing improves the performance of space-efficient multithreaded
applications by increasing the data locality [29]. None of this pre-
vious work, however, has studied upper or lower bounds on the
data locality of multithreaded computations executed on existing
hardware-controlled shared memory systems.

In this paper, we present theoretical and experimental results
onthe datalocality of work stealing on hardware-controlled shared
memory systems (HSMSs). Our first set of results are upper and
lower boundson the number of cachemissesin multithreaded com-
putations executed by the work-stealing algorithm. Let M, (C) de-
note the number of cache missesin the uniprocessor execution and
Mp(C) denote the number of cache missesin a P-processor ex-
ecution of amultithreaded computation by the work stealing algo-
rithm on an HSMS with cache size C'. Then, for a multithreaded
computation with 77 work (total number of instructions), 7w criti-
cal path (longest sequenceof dependences), we show the following
results for the work-stealing algorithm running on aHSMS.

e Lower bounds on the number of cache misses for general
computations: We show that there is a family of computa-
tions G, with 7y = ©(n) such that M, (C) = 3C while
even on two processors the number of misses M>(C) =
O(n).

¢ Upper bounds on the number of cache misses for nested-
parallel computations: For anested-parallel computation, we
show that Mp < M1(C) + 2C7, where 7 is the number of
steals in the P-processor execution. We then show that the
expected number of stealsis O([ 2] PT ), where m is the
time for acachemissand s isthetime for asteal.

¢ Upper bound on the execution time of nested-parallel com-
putations. We show that the expected execution time of a
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Figure 1: The speedup obtained by three different over-relaxation
algorithms.

nested-parallel computation on P processorsis O( % +
m[2]CTew+(m+s)Tw ), whereTh (C') isthe uniprocessor
execution time of the computation including cache misses.

Asin previouswork [6, 9], we represent a multithreaded com-
putation as a directed, acyclic graph (dag) of instructions. Each
nodein the dag represents a single instruction and the edges repre-
sent ordering constraints. A nested-parallel computation [5, 6] isa
race-free computation that can be represented with a series-parallel
dag [33]. Nested-parallel computations include computations con-
sisting of parallel loops and fork an joins and any nesting of them.
This class includes most computations that can be expressed in
Cilk [8], and all computations that can be expressed in Ned [5].
Our results show that nested-parallel computati ons have much bet-
ter locality characteristicsunder work stealing than do general com-
putations. We also briefly consider another class of computations,
computations with futures [12, 13, 14, 20, 25], and show that they
can be as bad as general computations.

The second part of our results are on further improving the data
locality of multithreaded computationswith work stealing. Inwork
stealing, aprocessor steals athread from arandomly (with uniform
distribution) chosen processor when it runs out of work. In certain
applications, such as iterative data-parallel applications, random
stealsmay cause poor datalocality. Thelocality-guided work steal-
ing is aheuristic modification to work stealing that allows athread
to have an affinity for a process. In locality-guided work stealing,
when a process obtains work it gives priority to a thread that has
affinity for the process. Locality-guided work stealing can be used
to implement a number of techniques that researchers suggest to
improve datalocality. For example, the programmer can achievean
initial distribution of work among the processesor schedul ethreads
based on hints by appropriately assigning affinitiesto threadsin the
computation.

Our preliminary experiments with locality-guided work steal-
ing give encouraging results, showing that for certain applications
the performance is very close to that of static partitioning in ded-
icated mode (i.e. when the user can lock down a fixed number of
processors), but does not suffer a performance cliff problem [10]
in multiprogrammed mode (i.e. when processors might be taken
by other usersor the OS). Figure 1 showsa graph comparing work
stealing, locality-guided work stealing, and static partitioning for a
simple over-relaxation algorithm on a 14 processor Sun Ultra En-
terprise. The over-relaxation algorithm iterates over a 1 dimen-
sional array performing a3-point stencil computation on each step.
The superlinear speedup for static partitioning and locality-guided

work stealing is due to the fact that the data for each run does not
fit into the L2 cache of one processor but fitsinto the collective L2
cache of 6 or more processors. For this benchmark the following
can be seen from the graph.

1. Locality-guided work stealing does significantly better than
standard work stealing since on each step the cache is pre-
warmed with the datait needs.

2. Locality-guided work stealing does approximately aswell as
static partitioning for up to 14 processes.

3. When trying to schedule more than 14 processes on 14
processors static partitioning has a serious performance
drop. Theinitia drop is due to load imbalance caused by
the coarse-grained partitioning. The performance then ap-
proaches that of work stealing as the partitioning gets more
fine-grained.

We areinterested in the performance of work-stealing computa-
tions on hardware-controlled shared memory (HSMSs). We model
an HSMS as agroup of identical processors each of which hasits
own cache and has a single shared memory. Each cache contains
C blocks and is managed by the memory subsystem automatically.
We allow for avariety of cache organizationsand replacement poli-
cies, including both direct-mapped and associative caches. We as-
sign a server process with each processor and associate the cache
of aprocessor with processthat the processor is assigned. Onelim-
itation of our work isthat we assumethat thereis no false sharing.

2 Related Work

As mentioned in Section 1, there are three main classes of tech-
niquesthat researchers have suggested to improve the data locality
of multithreaded programs. In the first class, the program datais
distributed among the nodesof adistributed shared-memory system
by the programmer and athread in the computationis scheduled on
the node that holds the data that the thread accesses[15, 22, 26].
In the second class, data-locality hints supplied by the programmer
are used in thread scheduling [15, 31, 34]. Techniques from both
classesare employedin distributed shared memory systemssuch as
COOL and Illinois Concert [15, 22] and also used to improve the
data locality of sequential programs[31]. However, the first class
of techniquesdo not apply directly to HSMSs, because HSM Ss do
not allow software controlled distribution of dataamongthe caches.
Furthermore, both classes of techniquesrely on the programmer to
determine the data access patternsin the application and thus, may
not be appropriate for applications with complex data-access pat-
terns.

The third class of techniques, which is based on execution
of threads that are close in the computation graph on the same
process, is applied in many scheduling algorithms including work
stealing [1, 9, 23, 26, 28, 19]. Blumofe et a showed bounds
on the number of cache misses in a fully-strict computation exe-
cuted by the work-stealing algorithm under the dag-consistent dis-
tributed shared-memory of Cilk [7]. Dag consistency is arelaxed
memory-consistency model that is employed in the distributed
shared-memory implementation of the Cilk language. In a dis-
tributed Cilk application, processes maintain the dag consistency
by means of the BACKER agorithm. In [7], Blumofe et al bound
the number of shared-memory cache missesin a distributed Cilk
application for cachesthat are maintained with the LRU replace-
ment policy. They assumed that accesses to the shared memory
are distributed uniformly and independently, which is not gener-
ally true because threads may concurrently access the same pages
by algorithm design. Furthermore, they assumed that processesdo
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Figure 2: A dag (directed acyclic graph) for a multithreaded com-
putation. Threadsare shown as gray rectangles.

not generate steal attempts frequently by making processes do ad-
ditional page transfers before they attempt to steal from another
process.

3 TheModel

In this section, we present agraph-theoretic model for multithreaded
computations, describe the work-stealing algorithm, define series-
paralel and nested-parallel computations and introduce our model
of an HSM'S (Hardware-controlled Shared-Memory System).

Aswith previouswork [6, 9] we represent amultithreaded com-
putation as a directed acyclic graph, adag, of instructions (see Fig-
ure 2). Each nodein the dag representsan instruction and the edges
represent ordering constraints. There are three typesof edges, con-
tinuation, spawn, and dependency edges. A thread is a sequential
ordering of instructions and the nodes that correspondsto the in-
structions are linked in a chain by continuation edges. A spawn
edgerepresentsthe creation of anew thread and goesfrom the node
representing the instruction that spavnsthe new thread to the node
representing the first instruction of the new thread. A dependency
edge from instruction ¢ of athread to instruction 5 of some other
thread represents a synchronization between two instructions such
that instruction 5 must be executed after :. We draw spawn edges
with thick straight arrows, dependency edgeswith curly arrowsand
continuation edgeswith thick straight arrows throughout this paper.
Also we show pathswith wavy lines.

For acomputation with an associated dag GG, we definethe com-
putational work, 77, as the number of nodesin GG and the critical
path, T, asthe number of nodes on the longest path of G.

Let » and v be any two nodesin adag. Thenwe call » an an-
cestor of v, and v adescendant of « if thereis a path from « to v.
Any nodeisits descendant and ancestor. We say that two nodesare
relatives if there is a path from oneto the other, otherwise we say
that the nodes are independent. The children of a node are inde-
pendent because otherwise the edge from the node to one child is
redundant. We call acommon descendant y of « and v amerger of
u and v if the pathsfrom u to y and v to y have only y in common.
We define the depth of a node « as the number of edges on the
shortest path from the root nodeto «. We define the least common
ancestor of u and v asthe ancestor of both » and v with maximum
depth. Similarly, we define the greatest common descendant of «
and v, asthe descendant of both « and v with minimum depth. An
edge (u, v) is redundant if there is a path between » and v that
does not contain the edge (u, v). Thetransitive reduction of adag
isthe dag with all the redundant edgesremoved.

In this paper we are only concerned with thetransitive reduction
of the computational dags. We also require that the dags have a
single node with in-degree 0, theroot, and a single node with out-
degree 0, the final node.

In amultiprocess execution of a multithreaded computation, in-
dependent nodes can execute at the sametime. If two independent
nodes read or modify the same data, we say that they are RR or

WW sharing respectively. If one node is reading and the other is
modifying the data we say they are RW sharing. RW or WW shar-
ing can cause dataraces, and the output of a computation with such
races usually depends on the scheduling of nodes. Such races are
typically indicative of abug [18]. We refer to computationsthat do
not have any RW or WW sharing asrace-freecomputations. In this
paper we consider only race-free computations.

The work-stealing algorithm is a thread scheduling algorithm
for multithreaded computations. The idea of work-stealing dates
back to the research of Burton and Sleep [11] and has been studied
extensively sincethen[2, 9, 19, 20, 24, 36, 37]. Inthework-stealing
algorithm, each process maintains a pool of ready threads and ob-
tainswork from its pool. When a process spawvns a new thread the
process adds the thread into its pool. When a process runs out of
work and finds its pool empty, it chooses a random process as its
victim and tries to steal work from the victim's pool.

In our analysis, we imagine the work-stealing algorithm oper-
ating onindividual nodesin the computation dag rather than on the
threads. Consider amultithreaded computation and its execution by
the work-stealing algorithm. We divide the execution into discrete
time steps such that at each step, each processis either working on
anode, whichwe call the assigned node, or istrying to steal work.
The execution of anodetakes1 time stepif the node doesnot incur
acachemiss and m stepsotherwise. We say that anodeis executed
at the time step that a process completes executing the node. The
execution time of a computation is the number of time steps that
el apse between the time step that a process starts executing the root
node to the time step that the final nodeis executed. The execution
schedule specifiesthe activity of each processat each time step.

During the execution, each process maintains a deque (doubly
ended queue) of ready nodes; we call the ends of a deque the top
and the bottom. When anode, u, is executed, it enables some other
nodew if u isthelast parent of v that is executed. We call the edge
(u,v) an enabling edge and u the designated parent of v. When a
processexecutesanodethat enablesother nodes, one of the enabled
nodes become the assigned node and the process pushes the rest
onto the bottom of itsdeque. If no nodeis enabled, then the process
obtainswork from its deque by removing anodefrom the bottom of
the deque. If aprocessfindsits deque empty, it becomesathief and
steals from a randomly chosen process, the victim. Thisis a steal
attempt and takes at least s and at most ks time steps for some
constant £ > 1 to complete. A thief process might make multiple
steal attempts before succeeding, or might never succeed. When a
steal succeeds, the thief process starts working on the stolen node
at the step following the completion of the steal. We say that a steal
attempt occursat the step it completes.

The work-stealing algorithm can be implemented in various
ways. We say that an implementation of work stealing is deter-
ministic if, whenever a process enables other nodes, the imple-
mentation always chooses the same node as the assigned node for
then next step on that process, and the remaining nodes are always
placed in the deque in the same order. This must be true for both
multiprocess and uniprocess executions. We refer to a determin-
istic implementation of the work-stealing algorithm together with
the HSMS that runs the implementation as a work stealer. For
brevity, we refer to an execution of a multithreaded computation
with awork stealer as an execution. We define the total work as
the number of stepstaken by a uniprocess execution, including the
cache misses, and denoteit by 7', (C'), where C isthe cache size.
We denote the number of cache misses in a P-process execution
with C-block cachesas M p(C'). We define the cache overhead
of a P-process execution as M p(C) — M1 (C), where M, (C) is
the number of missesin the uniprocess execution on the samework
stealer.

We refer to a multithreaded computation for which the transi-
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Figure 3: Illustrates the recursive definition for series-parallel dags.
Figure (a) is the base case, figure (b) depicts the serial, and figure
(c) depictsthe parallel composition.

tive reduction of the corresponding dag is series-parallel [33] as
aseries-parallel computation. A series-paralel dag G(V, E) isa
dag with two distinguished vertices, asource, s € V and asink,
¢t € V and can be defined recursively as follows (see Figure 3).

e Base: (@ consistsof asingle edge connecting s to ¢.

e Series Composition: G consists of two series-parallel dags
G1(Vi, Ey) and G2 (Va, E>) with disioint edge setssuch that
s isthe source of GG1, u isthe sink of GG; and the source of
G», andtisthesink of G». Moreover Vi NV, = {u}.

e Parallel Composition: The graph consistsof two series-parallel
dags G1(V1, B1) and Gz(V2, E») with digoint edges sets
suchthat s and ¢ are the source and the sink of both GG; and
G>2. Moreover Vi NV, = {s, t}.

A nested-parallel computationis arace-free series-parallel compu-
tation [6].

We al so consider multithreaded computationsthat usefutures[12,
13, 14, 20, 25]. The dag structures of computations with futures
are defined elsewhere [4]. Thisis a superclass of nested-parallel
computations, but still much more restrictive than general com-
putations. The work-stealing algorithm for futures is a restricted
form of work-stealing algorithm, where aprocess starts executing a
newly created thread immediately, putting its assigned thread onto
its deque.

In our analysis, we consider several cache organization and re-
placement policies for an HSMS. We model a cache as a set of
(cache) lines, each of which can hold the data belonging to amem-
ory block (a consecutive, typically small, region of memory). One
instruction can operate on at most one memory block. We say that
an instruction accesses a block or the line that contains the block
when the instruction reads or modifies the block. We say that an
instruction overwrites aline that contains the block & when thein-
struction accesses some other block that replaces b in the cache.
We say that a cache replacement policy issimpleif it satisfiestwo
conditions. First the policy is deterministic. Second whenever the
policy decides to overwrite a cache line, I, it makes the decision
to overwrite [ by only using information pertaining to the accesses
that are made after the last accessto I. We refer to a cache man-
aged with a simple cache-replacement policy as a smple cache.
Simple caches and replacement policies are common in practice.
For example, least-recently used (LRU) replacement policy, direct
mapped caches and set associative caches where each set is main-
tained by asimple cache replacement policy are smple.

In regards to the definition of RW or WW sharing, we assume
that reads and writes pertain to the whole block. This meanswe do
not allow for false sharing—when two processes accessing differ-
ent portions of ablock invalidate the block in each other’ s caches.
In practice, false sharing is an issue, but can often be avoided by
aknowledge of underlying memory system and appropriately pad-
ding the shared data to prevent two processesfrom accessing dif-
ferent portions of the same block.

Figure 4: Thestructure for dag of a computation with alarge cache
overhead.

4 General Computations

In this section, we show that the cache overhead of a multiprocess
execution of ageneral computation and a computation with futures
can be large even though the uniprocess execution incurs a small
number of misses.

Theorem 1 Thereis a family of computations
{Gn:in=kC, forke ZT}

with O(n) computational work, whose uniprocessexecutionincurs
3C misseswhile any 2-process execution of the computationincurs
Q(n) misses on a work stealer with a cache size of C, assuming
that S = O(C), where S is the maximum steal time.

Proof:  Figure 4 showsthe structure of adag, G4¢ for n = 4C.
Each node except the root node represents a sequence of C' in-

structions accessing a set of C' distinct memory blocks. The root
noderepresentsC'+ .S instructionsthat accessesC' distinct memory
blocks. The graph has two symmetric components L 4¢ and Rac,
which corresponds to the left and the right subtree of the root ex-
cludingtheleaves. We partition thenodesin G4 ¢ into three classes,
suchthat al nodesin aclass accessthe same memory blockswhile

nodesfrom different classesaccessmutually disjoint set of memory
blocks. Thefirst classcontainsthe root node only, the second class
containsal the nodesin L4c, and the third class contains the rest
of the nodes, which are the nodesin R4c and the leaves of G4c.
For general n = kC', G,, canbe partitionedinto L,,, R, andthe k
leaves of GG,, and the root similarly. Each of L,, and R,, contains
2[£7 -1 nodes and hasthe structure of acomplete binary treewith
addltl ona k leavesat the lowest level. There is adependency edge
from the leaves of both L,, and R,, to the leavesof G,

Consider awork stealer that executesthe nodes of G » intheor-
der that they are numberedin auniprocessexecution. In the unipro-
cess execution, no nodein L ,, incurs a cache miss except the root
node, since al nodesin L, accessthe same memory blocks asthe
root of L,,. The same argument holds for R,, and the k leaves of
G, Hencethe execution of the nodesin L., R,, and the leaves
causes 2C' misses. Since the root node causes C' misses, the total
number of missesin the uniprocessexecutionis3C. Now, consider
a 2-process execution with the same work stealer and call the pro-
cesses, process0 and 1. At time step 1, process 0 starts executing
the root node, which enablestheroot of R,, no later than time step
m. Since process 0 starts stealing immediately and there are no
other processesto steal from, process 1 steals and starts working
on theroot of R,,, no later than time step m + .S. Hence, the root
of R,, executesbeforetheroot of L,, and thus, al the nodesin L,
execute before the corresponding symmetric node in R,,. There-
fore, for any leaf of G,,, the parent that isin R, executes before
the parent in L,,. Therefore aleaf node of GG, is executed immedi-
ately after its parent in L,, and thus, causes C' cache misses. Thus,
the total number of cachemissesis Q(kC) = Q(n). [ ]
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Figure 5: The structure for dag of a computation with futures that
canincur alarge cache overhead.

There exists computations similar to the computation in Fig-
ure 4 that generalizes Theorem 1 for arbitrary number of processes
by making sure that all the processes but 2 steal throughout any
multiprocess execution. Even in the genera case, however, where
the average parallelism is higher than the number of processes,
Theorem 1 can be generalized with the same bound on expected
number of cache misses by exploiting the symmetry in G ,, and by
assuming a symmetrically distributed steal-time. With a symmetri-
caly distributed steal-time, for any ¢, asteal that takese stepsmore
than mean steal-time is equally likely to happen asasteal that takes
e less steps than the mean. Theorem 1 holds for computationswith
futures as well. Multithreaded computing with futures is a fairly
restricted form of multithreaded computing compared to comput-
ing with events such as synchronization variables. The graph F' in
Figure 5 shows the structure of a dag, whose 2-process execution
causes large number of cache misses. In a 2-process execution of
F, the enabling parent of the leaf nodesin the right subtree of the
root are in the left subtree and therefore the execution of each such
leaf node causes C' misses.

5 Nested-Parallel Computations

In this section, we show that the cache overhead of an execution of
a nested-parallel computation with a work stealer is at most twice
the product of the number of steals and the cache size. Our proof
hastwo steps. First, we show that the cacheoverhead is bounded by
the product of the cache size and the number of nodesthat are exe-
cuted “out of order” with respect to the uniprocessexecution order.
Second, we prove that the number of such out-of-order executions
isat most twice the number of steals.

Consider a computation G and its P-process execution, X p,
with awork stealer and the uniprocessexecution, X ; with the same
work stealer. Let v beanodein G and node u be the node that exe-
cutesimmediately before v in X;. Then we say that v is driftedin
X p if node u is not executed immediately before v by the process
that executesv in X p.

Lemma 2 establishesakey property of an executionwith simple
caches.

Lemma2 Consider aprocesswith asimple cacheof C blocks. Let
X1 denote the execution of a sequence of instructions on the proc-
ess starting with cache state .S, and let X denote the execution
of the same sequence of instructions starting with cache state S».
Then X incursat most C' moremissesthan X .

Proof: We construct a one-to-one mapping between the cache
lines in X and X, such that an instruction that accesses a line
{1 in X; accessestheentry I> in X», if and only if {1 ismappedto

l>. Consider X; andlet I; beacacheline. Let: bethefirst instruc-
tion that accesses or overwrites ;. Let I> be the cache line that
the same instruction accesses or overwrites in X, and map {; to
l>. Sincethe cachesare simple, an instruction that overwrites; in
X, overwritesl; in X>. Therefore the number of missesthat over-
writes!; in X isequal to the number of missesthat overwrites I,
in X after instruction . Since: itself can cause 1 miss, the number
of missesthat overwrites; in X; isat most 1 more than the num-
ber of misses that overwrites I> in X2. We construct the mapping
for each cacheline in X; in the same way. Now, let us show that
the mapping is one-to-one. For the sake of contradiction, assume
that two cachelines, {; and {2, in X; map to thesamelinein X-.
Let 41 and i> be the first instructions accessing the cache lines in
X, suchthat ¢; is executed before 2. Sincei; and :2 map to the
samelinein X, and the cachesare simple, i accessestheline that
11 accessesin X; butthen!; = I, acontradiction. Hence, thetotal
number of cache missesin X; isat most C more than the misses
in Xs. [ |

Theorem 3 Let 1D denote the total number of drifted nodesin an
execution of a nested-parallel computation with a work stealer on
P processes, each of which hasa simple cachewith C words. Then
the cache overhead of the executionisat most C'D.

Proof: Let Xp» denotethe P-processexecution and let X', bethe
uniprocess execution of the same computation with the same work
stealer. We divide the multiprocesscomputationinto D pieceseach
of which can incur at most C' more misses than in the uniprocess
execution. Let « beadrifted nodelet ¢ be the processthat executes
u. Let v bethe next drifted node executed on g (or the final node
of the computation). Let the ordered set O represent the execution
order of al the nodesthat are executed after » (u isincluded) and
before v (v is excluded if it is drifted, included otherwise) on ¢ in
Xp. Then nodesin O are executed on the same processand in the
sameorder in both X; and X p.

Now consider the number of cache missesduring the execution
of thenodesin O in X; and X ». Sincethe computation is nested
paralel and therefore race free, a process that executes in paral-
lel with ¢ does not cause ¢ to incur cache misses due to sharing.
Therefore by Lemma 2 during the execution of the nodesin O the
number of cache missesin X p isat most C' more than the number
of missesin X;. This bound holds for each of the D sequence of
such instructions O corresponding to D drifted nodes. Since the
sequence starting at the root node and ending at the first drifted
node incurs the same number of missesin X and X p X p takesat
most C'D more missesthan X, and the cache overhead is at most
CD. |

Lemma 2 (and thus Theorem 3) does not hold for cachesthat
are not smple. For example, consider the execution of a sequence
of instructions on a cache with least-frequently-used replacement
policy starting at two cachestates. Inthefirst cachestate, the blocks
that arefrequently accessedby theinstructionsarein the cachewith
high frequencies, whereasin the second cache state, the blocksthat
are in the cache are not accessed by the instruction and have low
frequencies. The execution with the second cache state, therefore,
incurs many more misses than the size of the cache compared to
the execution with the second cache state.

Now we show that the number of drifted nodesin an execution
of aseries-parallel computation with awork stealer isat most twice
the number of steals. The proof is based on the representation of
series-parallel computations as sp-dags. We call a node with out-
degreeof at least 2 afork node and partition the nodes of an sp-dag
except the root into three categories. join nodes, stable nodes and
nomadic nodes . We call a node that has an in-degree of at least
2 ajoin node and partition all the nodes that have in-degree 1 into



Figure 7: Thejoint embedding of » and v.

two classes. anomadic node has a parent that is afork node, and a
stable node hasaparent that hasout-degree 1. Theroot nodehasin-
degree0 andit doesnot belong to any of these categories. Lemma4
lists two fundamental properties of sp-dags; one can prove both
properties by induction on the number of edgesin an sp-dag.

Lemma4 Let G be an sp-dag. Then G has the following proper-
ties.

1. Theleast common ancestor of any two nodesin G isunique.

2. The greatest common descendant of any two nodesin G is
unique and is equal to their unique merger.

Lemmab5 Let s beafork node. Then no child of s isajoin node.

Proof: Let u and v denote two children of s and supposeu is a
join node asin Figure 6. Let ¢ denote some other parent of » and
z denote the unique merger of « and v. Then both z and « are
mergers for s and ¢, whichisa contradiction of Lemmab. Henceu
isnot ajoin node. [ |

Coroallary 6 Only nomadic nodes can be stolen in an execution of
a series-parallel computation by the work-stealing algorithm.

Proof: Let u be astolen nodein an execution. Then u is pushed
on a deque and thus the enabling parent of « is afork node. By
Lemmab, » isnot ajoin nodeand hasanincoming degree 1. There-
fore u isnomadic. [ |

Consider a series-parallel computation and let G be its sp-dag.
Let » and v be two independent nodesin G and let s and ¢ denote
their least common ancestor and greatest common descendant re-
spectively as shown in Figure 7. Let G; denote the graph that is
induced by the relatives of « that are descendantsof s and also an-
cestors of ¢. Similarly, let G2 denote the graph that is induced by
the relatives of v that are descendantsof s and ancestorsof ¢. Then
we call GG the embedding of « with respect to v and G the em-
bedding of v with respect to . We call the graph that is the union
of G and G» the joint embedding of « and v with source s and
sink . Now consider an execution of G and y and z bethe children
of s suchthat y is executed before z. Thenwe call y the leader and
z the guard of the joint embedding.

Figure 8: Thejoin node s is the least common ancestor of y and =.
Node » and v are the children of s.

Lemma7 Let G(V, E) be an sp-dag and let y and =z be two par-
entsof ajoinnodet in G. Let G; denote the embedding of y with
respect to z and G2 denote the embedding of = with respect to y.
Let s denote the source and ¢ denote the sink of the joint embed-
ding. Then the parents of any nodein G except for s and ¢ isin
(1 and the parentsof any nodein G > except for s and ¢ isin G».

Proof: Sincey and z areindependent, both of s and ¢ are different
from y and =z (see Figure 8). First, we show that there is not an
edgethat startsat anodein G, except at s and endsat anodein G,
except at ¢ and vice versa. For the sake of contradiction, assume
thereisan edge (m,n) suchthat m # sisin G, andn # tisin
G>. Then m is the least common ancestor of y and z; hence no
such (m, n) exists. A similar argument holdswhen m isin G» and
nisindGi.

Second, we show that there does not exists an edge that origi-
natesfrom anode outside of G; or G> andendsat anodeat G or
(2. For the sakeof contradiction, let (w, «) bean edge such that =
isin Gy andw isnotin G, or G2. Then z isthe unique merger for
the two children of the least common ancestor of w and s, which
we denote with r. But then ¢ is also amerger for the children of r.
The children of r areindependent and have a unique merger, hence
thereis no such edge (w, z). A similar argument holdswhen z is
in G>. Therefore we conclude that the parents of any nodein G
except s and ¢ isin G and the parentsof any nodein G- except s
and¢isinGa. [ |

Lemma8 Let G bean sp-dagand let y and = be two parentsof a
join node ¢ in G. Consider the joint embedding of y and = and let
u be the guard node of the embedding. Then y and = are executed
in the same respective order in a multiprocess execution as they
are executed in the uniprocess execution if the guard node « is not
stolen.

Proof: Let s be the source, ¢ the sink, and v the leader of the
joint embedding. Since « is not stolen, v is not stolen. Hence, by
Lemma 7, before it starts working on «, the process that executes
s executed v and all its descendantsin the embedding except for ¢
Hence, = is executed before u and y is executed after v asin the
uniprocess execution. Therefore, y and = are executed in the same
respective order asthey execute in the uniprocess execution. [ |

Lemma9 A nomadic node is drifted in an execution only if it is
stolen.

Proof: Let u beanomadic and drifted node. Then, by Lemma,
u has asingle parent s that enables u. If u isthefirst child of s to
executein the uniprocessexecution then « isnot drifted in the mul-
tiprocess execution. Hence, « is not the first child to execute. Let v
bethelast child of s that is executed before u in the uniprocess ex-
ecution. Now, consider the multiprocess execution and let ¢ be the
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Figure 9: Nodes ¢; and ¢, are two join nodes with the common
guard .

processthat executes v. For the sake of contradiction, assume that
u is not stolen. Consider the joint embedding of « and v as shown
in Figure 8. Since al parents of the nodesin GG except for s and
t arein G by Lemma7, q executes all the nodesin G, before it
executes u and thus, z precedes u on g. But then » is not drifted,
because = is the node that is executed immediately before « in the
uniprocess computation. Hence v is stolen. [ |

L et usdefinethe cover of ajoin nodet in an execution asthe set
of all the guard nodes of the joint embedding of all possible pairs
of parentsof ¢ in the execution. The following lemma showsthat a
join nodeisdrifted only if anodeinits cover is stolen.

Lemma 10 Ajoin nodeisdrifted in an execution only if a nodein
its cover is stolen in the execution.

Proof: Consider the execution and let ¢ be a join node that is
drifted. Assume, for the sake of contradiction, that no nodein the
cover of ¢, C(t), isstolen. Let y and = be any two parentsof ¢ as
in Figure 8. Then y and z are executed in the same order asin the
uniprocess execution by Lemma 8. But then all parents of ¢ exe-
cute in the same order as in the uniprocess execution. Hence, the
enabling parent of ¢ in the executionisthe sameasin the uniprocess
execution. Furthermore, the enabling parent of ¢ has out-degree 1,
because otherwise ¢ is not a join node by Lemma 5 and thus, the
process that enables ¢ executes t. Therefore, ¢ is not drifted. A
contradiction, henceanodein the cover of ¢ is stolen. [ |

Lemma 11 Thenumber of drifted nodesin an execution of a series-
parallel computation is at most twice the number of steals in the
execution.

Proof: We associate each drifted node in the execution with a
steal such that no steal has more than 2 drifted nodes associated
with it. Consider a drifted node, «. Then u is not the root node
of the computation and it is not stable either. Hence, u is either a
nomadic or join node. If » isnomadic, then « isstolenby Lemma9
and we associate u with the steal that steals . Otherwise, u isa
join node and there is a node in its cover C'(u) that is stolen by
Lemma 10. We associate « with the steal that stealsanodein its
cover. Now, assume there are more than 2 nodes associated with a
steal that steals node ». Then there are at least two join nodes ¢,
and ¢, that are associated with u. Therefore, node « isin thejoint
embedding of two parents of ¢; and also t2. Let x1, y1 bethese
parentsof ¢; and x2, y» bethe parents of ¢», asshownin Figure 9.
But then u has parent that isafork node and is ajoint node, which
contradictsLemma5. Henceno such u exists. [ |

Theorem 12 Thecacheoverheadof an execution of a nested-parallel
computation with simple cachesis at most twice the product of the
number of missesin the execution and the cache size.

Proof: Follows from Theorem 3 and Lemma 11. [ ]

6 An Analysisof Nonblocking Work Stealing

The non-blocking implementation of the work-stealing algorithm
delivers provably good performance under traditional and muilti-
programmed workloads. A description of the implementation and
itsanalysisis presented in [2]; an experimenta evaluation is given
in [10]. In this section, we extend the analysis of the non-blocking
work-stealing algorithm for classical workloads and bound the ex-
ecution time of a nested-parallel, computation with awork stealer
to include the number of cache misses, the cache-miss penalty and
the steal time. First, we bound the number of steal attemptsin an
execution of ageneral computation by the work-stealing agorithm.
Then we bound the execution time of anested-parallel computation
with awork stealer using results from Section 5. The analysisthat
we present hereis similar to the analysisgiven in [2] and usesthe
same potential function technique.

We associate a nonnegative potential with nodesin a computa-
tion’ s dag and show that the potential decreases as the execution
proceeds. We assume that a node in a computation dag has out-
degree at most 2. Thisis consistent with the assumption that each
node represents on instruction. Consider an execution of acompu-
tation with itsdag, G(V, E) with the work-stealing algorithm. The
execution grows a tree, the enabling tree, that contains each node
in the computation and its enabling edge. We define the distance
of anodeu € V, d(u), asTe — depth(u), wheredepth(u) isthe
depth of u in the enabling tree of the computation. Intuitively, the
distance of a node indicates how far the node is awvay from end of
the computation. We define the potential function in terms of dis-
tances. At any given step ¢, we assign a positive potential to each
ready node, all other nodeshave 0 potential. A nodeisreadyif itis
enabled and not yet executed to completion. Let « denote aready
node at time step . Then we define, ¢;(u), the potential of w at
timestep: as

32d(u)—1
$i(u) = { 32d(w)

Thepotential at step ¢, ®;, isthe sum of the potential of each ready
node at step :. When an execution begins, the only ready node is
theroot node which hasdistance 7', and is assignedto some proc-
ess, so we start with &, = 327=~~!, As the execution proceeds,
nodes that are deeper in the dag become ready and the potential
decreases. There are no ready nodes at the end of an execution and
the potential isO.

Let us give a few more definitions that enable us to associate
a potential with each process. Let R;(g) denote the set of ready
nodes that are in the deque of process ¢ along with ¢'s assigned
node, if any, at the beginning of step :. We say that each node «
in R:(q) belongsto processq. Then we define the potential of ¢'s

dequeas
®i(q) = Z di(u) .

wER;(q)

if u isassigned,;
otherwise.

In addition, let A; denotethe set of processeswhose dequeisempty
at the beginning of step ¢, and let D; denote the set of all other
processes. We partition the potential ®; into two parts
O; = (A + Pi(Dy),
where
Bi(A) = Di(q) ad (D)= Diq),
gEA; geED;

and we analyze the two parts separately.



Lemma 13 listsfour basic properties of the potential that we use
frequently. The proofs for these properties are given in [2] and the
listed properties are correct independent of the time that execution
of anode or asteal takes. Therefore, we give a short proof sketch.

Lemma 13 The potential function satisfies the following proper-
ties.
1. Supposenode u is assigned to a process at step :. Then the
potential decreasesby at least (2/3)d:(u).

2. Suppose a nhode u is executed at step ¢. Then the potential
decreasesby at least (5/9)¢:(u) at step ¢.

3. Consider any step ¢ and any processq in D ;. The topmost
node u in ¢’s deque contributes at least 3/4 of the potential
associated with ¢. That is, we have ¢ (u) > (3/4)®i(q).

4. Supposea processp choosesprocessq in D ; asitsvictim at
time step ¢ (a steal attempt of p targeting ¢ occursat step ¢).
Then the potential decreasesby at least (1/2)®(g) dueto
the assignment or execution of a node belonging to ¢ at the
end of step s.

Property 1 follows directly from the definition of the potential
function. Property 2 holds because a node enables at most two
children with smaller potential, one of which becomes assigned.
Specifically, the potential after the execution of node « decreasesby
atleast ¢(u)(1—+— %) = 2¢(u). Property 3 follows from astruc-
tural property of the nodesin adeque. The distance of the nodesin
aprocess deque decrease monotonically from the top of the deque
to bottom. Therefore, the potentia in the dequeis the sum of geo-
metrically decreasing terms and dominated by the potentia of the
top node. Thelast property holds because when a process chooses
process g in D; asits victim, the node at the top of ¢’ s deque
is assigned at the next step. Therefore, the potential decreases by
2/3¢:(u) by property 1. Moreover, ¢:(u) > (3/4)®:(g) by prop-
erty 3 and the result follows.

Lemma 16 showsthat the potential decreasesasacomputation
proceeds. The proof for Lemma 16 utilizes balls and bins game
bound from Lemma 14.

Lemma 14 (Ballsand Weighted Bins) Supposethat at least P balls
are thrown independently and uniformly at random into P hins,
wherebin : hasaweight W;,for: = 1,..., P. Thetotal weight is

W = Zil W;. For each bin ¢, definethe randomvariable X ; as

X'—{ ; if someball landsin bin ¢;
T L0 otherwise.

IfX = Zil X, thenfor any 3 intherange0 < 3 < 1, we have
Pr{X >pgW}>1-1/((1 - Be).

This lemma can be proven with an application of Markov’ s in-
equality. The proof of aweaker version of this lemma for the case
of exactly P throws is similar and given in [2]. Lemma 14 aso
follows from the weaker lemma because X does not decrease with
more throws.

We now show that whenever P or more steal attempts occur, the
potential decreaseshby a constant fraction of ®;(D;) with constant
probability.

Lemma 15 Consider any step ¢ and any later step 5 such that at
least P steal attempts occur at steps from: (inclusive) to j (exclu-
sive). Then we have

1 1
Pr{q),‘ —®; > Z(I),(Dl)} > 1

Moreover the potential decreaseis because of the execution or as-
signment of nodes belonging to a processin D ;.

Proof: Consider all P processesand P steal attempts that occur
at or after step ;. For each processq in D, if one or more of the
P attempts target ¢ as the victim, then the potential decreases by
(1/2)®:(q) dueto theexecution or assignment of nodesthat belong
to ¢ by property 4 in Lemma 13. If we think of each attempt asa
ball toss, then we have an instance of the Balls and Weighted Bins
Lemma (Lemma14). For each processq in D ;, weassign aweight
W, = (1/2)®:(q), and for each other process ¢ in A;, we assign
aweight W, = 0. Theweightssumto W = (1/2)®;(D;). Using
B = 1/2 in Lemma 14, we conclude that the potential decreases
by at least W = (1/4)®:(D;) with probability greater than 1 —
1/((1 — B)e) > 1/4 dueto the execution or assignment of nodes
that belong to aprocessin D;. [ |

We now bound the number of steal attemptsin awork-stealing
computation.

Lemma 16 Consider a P-processexecutionof a multithreaded com-
putation with the work-stealing algorithm. Let 71 and T'», denote
the computational work and the critical path of the computation.
Then the expected number of steal attempts in the execution is
O([2] PTw ). Moreover, for any e > 0, the number of steal at-
temptsis O([ 2] PTw + lg(1/¢)) with probability at least 1 — «.

Proof: We analyze the number of steal attempts by breaking the
execution into phasesof [ ] P steal attempts. We show that with
constant probability, a phase causesthe potential to drop by a con-
stant factor. The first phase begins at step t1 = 1 and ends at
the first step ¢; such that at least [ 2] P steal attempts occur dur-
ing the interval of steps[t1,¢1]. The second phase begins at step
t» =t} + 1, and so on. Let us first show that there are at least
m steps in a phase. A process has at most 1 outstanding steal
attempt at any time and a steal attempt takes at least s steps to
complete. Therefore, at most P steal attempts occur in a period
of s time steps. Hence a phase of steal attempts takes at least
[([Z1)P)/P] - s > m time units.

Consider a phase beginning at step ¢, and let 5 be the step at
which the next phase begins. Then: + m < j. We will show that
wehave Pr{®; < (3/4)®;} > 1/4. Recall that the potentia can
be partitioned as®; = ®;(A;) + ®;(D:). Sincethe phase contains
[Z] P stedl attempts, Pr {&; — &; > (1/4)®:(D:)} > 1/4 due
to execution or assignment of nodesthat belong to aprocessin D ;,
by Lemma 15. Now we show that the potential also drops by a
constant fraction of ®;(.A;) due to the execution of assigned nodes
that are assigned to the processesin A ;. Consider a process, say
q in A;. If ¢ does not have an assigned node, then @ ;(q) = 0.
If ¢ has an assigned node u, then ®;(g) = ¢:(u). In this case,
process g completesexecuting nodew at step: +m — 1 < j at the
latest and the potential drops by at least (5/9)¢:(u) by property
2 of Lemma 13. Summing over each process g in A;, we have
O, — &, > (5/9)®:(A:). Thus, we have shown that the potential
decreases at least by a quarter of ®;(A;) and ®;(D;). Therefore
no matter how the total potential is distributed over A; and D;, the
total potential decreases by a quarter with probability more than
1/4, that is, Pr{®; — ®; > (1/4)®;} > 1/4.

We say that a phase is successful if it causes the potential to
drop by at least a 1/4 fraction. A phaseis successful with prob-
ability at least 1/4. Since the potential starts at & = 32Tec !
and ends at 0 (and is aways an integer), the number of success-
ful phasesis at most (27 — 1)log,/; 3 < 8Tw. The expected
number of phases needed to obtain 87", successful phasesis at
most 327 . Thus, the expected number of phasesis O(T« ), and
because each phase contains [ 27 P steal attempts, the expected
number of steal attempts is O([ 2] P T.). The high probability
bound follows by an application of the Chernoff bound. [ |



Theorem 17 Let M »(C') be the number of cache missesin a P-
process execution of a nested-parallel computation with a work-
stealer that has simple cachesof C' blockseach. Let M1 (C') bethe
number of cache missesin the uniprocess execution Then

Mp(C) = Mi(C) + 0([?1 CPTo + [?1 CP In(1/¢))
with probability at least 1 —e. Theexpected number of cache misses
is

Mi(C) +O([ %] CP Tw)

Proof: Theorem 12 shows that the cache overhead of a nested-
parallel computation is at most twice the product of the number of
stealsand the cache size. Lemma 16 showsthat the number of steal

attemptsis O([ 2] P (T +In(1/e))) with probability at least 1 —e
and the expected number of stealsis O([ 2P Tw ). The number
of stealsisnot greater than the number of steal attempts. Therefore
the boundsfollow. [ |

Theorem 18 Consider a P-process, nested-parallel, work-stealing
computation with simple caches of C' blocks. Then, for any ¢ > 0,
the executiontime is

T1(C) E]

O(—p—+m[~

C(Too +In(1/e))+ (m+3)(Teo +1n(1/e)))

with probability at least (1 — ). Moreover, the expected running
timeis

T1(C)
P

™

O( —|—m[s

CTow+(m+s)Tx).

Proof: We usean accounting argument to boundthe running time.
At each stepin the computation, each process putsadollar into one
of two buckets that matches its activity at that step. We name the
two buckets as the work and the steal bucket. A process puts a
dollar into the work bucket at a step if it is working on a nodein
the step. The execution of a node in the dag adds either 1 or m
dollars to the work bucket. Similarly, a process puts a dollar into
the steal bucket for each step that it spends stealing. Each stea
attempt takes O(s) steps. Therefore, each steal adds O(s) dollars
to the steal bucket. The number of dollarsin the work bucket at the
end of executionisat most O(7T1 + (m — 1) Mp(C)), whichis

O(TL(C) + (m —1) [g CP (T +1In(1/¢')))

with probability at least 1 — &',

The total number of dollarsin steal bucket is the total number
of steal attempts multiplied by the number of dollars added to the
steal bucket for each steal attempt, which is O(s). Therefore total
number of dollarsin the steal bucket is

O(s [?} P (T +1In(1/<")))

with probability at least 1 — ¢’. Each process adds exactly one
dollar to a bucket at each step so we divide the total number of
dollars by P to get the high probability bound in the theorem. A
similar argument holds for the expected time bound. [ |

Step 1

Figure 10: The tree of threads created in a data-parallel work-
stealing application.

7 Locality-Guided Work Stealing

Thework-stealing algorithm achievesgood data locality by execut-
ing nodesthat are closein the computation graph on the sameproc-
ess. For certain applications, however, regions of the program that
access the same data are not close in the computational graph. As
an example, consider an application that takes a sequence of steps
each of which operatesin parallel over aset or array of values. We
will call such an application aniterative data-parallel application.
Such an application can be implemented using work-stealing by
forking atree of threads on each step, in which each |eaf of thetree
updates a region of the data (typicaly digoint). Figure 10 shows
an example of the trees of threads created in two steps. Each node
represents athread and is labeled with the processthat executesit.
Thegray nodesarethe leaves. Thethreads synchronizein the same
order asthey fork. The first and second steps are structurally iden-
tical, and each pair of corresponding gray nodes update the same
region, often using much of the same input data. The dashed rect-
anglein Figure 10, for example, shows a pair of such gray nodes.
To get good locality for this application, threads that update the
same dataon different stepsideally should run on the same proces-
sor, even though they are not “close” in the dag. In work stealing,
however, thisis highly unlikely to happen due to the random steals.
Figure 10, for example, shows an execution where al pairs of cor-
responding gray nodes run on different processes.

In this section, we describe and evaluate locality-guided work
stealing, a heuristic modification to work stealing which is de-
signed to allow locality between nodesthat are distant in the com-
putational graph. Inlocality-guided work stealing, each thread can
be given an affinity for aprocess, and when a process obtains work
it givespriority to threadswith affinity for it. To enablethis, in addi-
tion to adeque each processmaintainsamailbox: afirst-in-first-out
(FIFO) queue of pointersto threads that have affinity for the proc-
ess. There are then two differences between the locality-guided
work-stealing and work-stealing algorithms. First, when creating
a thread, a process will push the thread onto both the deque, as
in normal work stealing, and also onto the tail of the mailbox of
the process that the thread has affinity for. Second, a processwill
first try to obtain work from its mailbox before attempting a steal.
Because threads can appear twice, once in a mailbox and once on
a deque, there needs to be some form of synchronization between
the two copiesto make sure the thread is not executed twice.

A number of techniquesthat have been suggested to improve
the data locality of multithreaded programs can be realized by the
locality-guided work-stealing algorithm together with an appropri-
ate policy to determine the affinities of threads. For example, an



initial distribution of work among processescan be enforced by set-
ting the affinities of athread to the processthat it will be assigned
at the beginning of the computation. We call this locality-guided
work-stealing with initial placements. Likewise, techniques that
rely on hints from the programmer can be realized by setting the
affinity of threads based on the hints. In the next section, we de-
scribe an implementation of locality-guided work stealing for iter-
ative data-parallel applications. The implementation described can
be modified easily to implement other techniques mentioned.

7.1 Implementation

We built locality-guided work stealing into Hood. Hood is a multi-
threaded programming library with a nonblocking implementation
of work stealing that delivers provably good performance under
both traditional and multiprogrammed workloads[2, 10, 30].

In Hood, the programmer definesathread asa C++ class, which
we refer to as the thread definition. A thread definition has a
method named r un that defines the code that the thread executes.
The r un method is a C++ function which can call Hood library
functions to create and synchronize with other threads. A ropeis
an object that is an instance of athread definition class. Each time
the r un method of arope is executed, it creates a new thread. A
rope can have an affinity for aprocess, and when the Hood run-time
system executes such arope, the system passes this affinity to the
thread. If the thread does not run on the process for which it has
affinity, the affinity of the rope is updated to the new process.

Iterative data-parallel applications can effectively use ropes by
making sure all “corresponding” threads (threads that update the
same region across different steps) are generated from the same
rope. A thread will therefore always have an affinity for the process
on which it' s corresponding thread ran on the previous step. The
dashed rectanglein Figure 10, for example, representstwo threads
that are generated in two executions of onerope. To initialize the
ropes, the programmer needsto create atree of ropes beforethefirst
step. Thistreeis then used on each step when forking the threads.

To implement locality-guided work stealing in Hood, we use
a nonblocking queue for each mailbox. Since athread is put to a
mailbox and to a deque, one issue is making sure that the thread
is not executed twice, once from the mailbox and once from the
deque. One solution is to remove the other copy of athread when
a process starts executing it. In practice, this is not efficient be-
cause it has a large synchronization overhead. In our implementa
tion, we do this lazily: when a process starts executing a thread, it
sets aflag using an atomic update operation such as test-and-set or
compare-and-swap to mark the thread. When executing athread, a
process identifies a marked thread with the atomic update and dis-
cards the thread. The second issue comes up when one wants to
reuse the thread data structures, typically those from the previous
step. When athread’ s structure isreused in astep, the copiesfrom
the previous step, which can be in amailbox or a deque needs to
be marked invalid. One can implement this by invalidating al the
multiple copies of threads at the end of a step and synchronizing
all processesbeforethe next step start. In multiprogrammed work-
loads, however, the kernel can swap a process out, preventing it
from participating to the current step. Such a swapped out process
preventsall the other processesfrom proceeding to the next step. In
our implementation, to avoid the synchronization at the end of each
step, we time-stamp thread data structures such that each process
closely follows the time of the computation and ignores a thread
that is“ out-of-date”.
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Benchmark | Work | Overhead | Critical Path | Average
(1) (&) Length (Tw) | Par. (£-)

staticHeat 15.95 1.10

heat 16.25 1.12 0.045 361.11

IgHeat 16.37 1.12 0.044 372.05

ipHeat 16.37 1.12 0.044 372.05

staticRelax | 44.15 1.08

relax 43.93 1.08 0.039 1126.41

IgRelax 44.22 1.08 0.039 1133.84

ipRelax 44.22 1.08 0.039 1133.84

Table 1: Measured benchmark characteristics. We compiled all
applicationswith Sun CC compiler using - xar ch=v8pl us - Cb
-dal i gn flags. All times are given in seconds. 7', denotesthe
execution time of the sequential algorithm for the application and
T, is14.54 for Heat and 40.99 for Rel ax.

7.2 Experimental Results

In this section, we present the results of our preliminary experi-
mentswith locality-guided work stealing ontwo small applications.
The experiments were run on a 14 processor Sun Ultra Enterprise
with 400 MHz processorsand 4M byte L2 cacheeach, and running
Solaris2.7. We used thepr ocessor _bi nd systemcall of Solaris
2.7 to bind processesto processorsto prevent Solaris kernel from
migrating aprocess among processors, causing the processto loose
its cache state. When the number of processesis less than num-
ber of processorswe bind one processto each processor, otherwise
we bind processesto processors such that processesare distributed
among processorsas evenly aspossible.

We use the applications Heat and Rel ax in our evaluation.
Heat is a Jacobi over-relaxation that simulates heat propagation
on a2 dimensional grid for anumber of steps. Thisbenchmark was
derived from similar Cilk [27] and SPLASH [35] benchmarks. The
main datastructures aretwo equal-sized arrays. Thealgorithm runs
in stepseach of which updatesthe entriesin onearray usingthe data
in the other array, which was updated in the previous step. Rel ax
is a Gauss-Seidel over-relaxation algorithm that iterates over onea
1 dimensional array updating each element by a weighted average
of its value and that of its two neighbors. We implemented each
application with four strategies, static partitioning, work stealing,
locality-guided work stealing, and locality guided work stealing
with initial placements. The static partitioning benchmarks divide
the total work equally among the number of processes and makes
sure that each process accesses the same data elementsin all the
steps. It is implemented directly with Solaris threads. The three
work-stealing strategies are all implemented in Hood. The plain
work-stealing version uses threads directly, and the two locality-
guided versions use ropes by building atree of ropes at the begin-
ning of the computation. Theinitial placement strategy assignsini-
tial affinities to the ropes near the top of the tree to achieve a good
initial load balance. We use the following prefixes in the names of
the benchmarks: st ati ¢ (static partitioning), none, (work steal-
ing), | g (locality guided work stealing), and | g (Ig with initial
placement).

Weranall Heat benchmarkswith-x 8K -y 128 -s 100
parameters. With these parameters each Heat benchmark allo-
catestwo arraysof double precision floating point numbers of 8192
columnsand 128 rows and doesrelaxation for 100 steps. Weran all
Rel ax benchmarkswith the parameters-n 3M -s 100. With
these parameters each Rel ax benchmark allocates one array of 3
million double-precision floating points numbers and does relax-
ation for 100 steps. With the specified input parameters, a Rel ax
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Figure 11: Speedup of heat benchmarks
on 14 processors.

benchmark allocates 16 Megabytes and a Heat benchmark allo-

cates24 Megabytesof memory for the main data structures. Hence,
themain datastructuresfor Heat benchmarksfit into the collective
L2 cache space of 4 or more processes and the data structures for

Rel ax benchmarksfit into that of 6 or more processes. The data
for no benchmark fits into the collective L1 cache space of the Ul-

tra Enterprise. We observe superlinear speedupswith some of our
benchmarkswhen the collective cachesof the processeshold asig-

nificant amount of frequently accessed data. Table 1 shows charac-

teristics of our benchmarks. Neither the work-stealing benchmarks
nor the locality-guided work-stealing benchmarks have significant
overhead compared to the serial implementation of the correspond-
ing algorithms.

Figures 11 and Figure 1 show the speedup of the Heat and
Rel ax benchmarks, respectively, as a function of the number of
processes. The static partitioning benchmarks deliver superlinear
speedups under traditional workloads but suffer from the perform-
ance cliff problem and deliver poor performance under multipro-
gramming workloads. The work-stealing benchmarks deliver poor
performance with ailmost any number of processes. the locality-
guided work-stealing benchmarkswith or without initial placements,
however, matches the static partitioning benchmarks under tradi-
tional workloads and delivers superior performance under multi-
programming workloads. Theinitial placement strategy improves
the performance under traditional work loads, but it does not per-
form consistently better under multiprogrammed workloads. This
is an artifact of binding processesto processors. Theinitial place-
ment strategy distributes the load among the processes equally at
the beginning of the computation but binding creates aload imbal-
ance between processors and increases the number of steals. In-
deed, the benchmarks that employ the initial-placement strategy
does worse only when the number of processesis slightly greater
than the number of processors.

The locality-guided work-stealing delivers good performance
by achieving good data locality. To substantiate this, we counted
the average number of times that an element is updated by two
different processesin two consecutive steps, which we call a bad
update. Figure 12 shows the percentage of bad updates in our
Heat benchmarks with work stealing and locality-guided work-
stealing. The work-stealing benchmarks incur a high percentage
of bad updates, whereas the locality-guided work-stealing bench-
marks achieve a very low percentage. Figure 13 shows the num-
ber of random steals for the same benchmarksfor varying number
of processes. The graph is similar to the graph for bad updates,
because it is the random steals that causes the bad updates. The
figuresfor the Rel ax application are similar.
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Figure 12: Percentage of bad updates for
theHeat benchmarks.

50 0 5 10 15 20 25
Number of Processes

Figure 13: Number of stealsin the Heat
benchmarks.
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