
Parallel	Algorithms	and
Big	Data	Für Alle

Guy	Blelloch,
and	lots	of	others

Carnegie	Mellon	University

Why Parallelism?

Page 2IC	2015

64 core blade servers ($6K)
(shared memory)

Page 3

x 4 =

IC	2015

4992 “cuda” cores

IC	2015 4

5IC 2015

Up to 300K servers

IC	2015 6

UDOO : Quad Core

IC	2015 7

Parallel	machines	have	replaced	sequential	
machines,	but	parallel	algorithms	have	not	yet	
replaced	sequential	algorithms.	 Why?

It	is	not	because	they	are	not	efficient	or	cost	
effective.

1	Oct	15 8KIT	2015

Alenex	2012 9

Tseq/T32
31.6
21.6
11.2
10
9

14.5
15
17
11.7
17
18
15

0"

4"

8"

12"

16"

20"

24"

28"

32"

So
rt"

Du
pli
ca
te"
Re
mo
va
l"

Mi
n"S
pa
nn
ing
"Tr
ee
"

Ma
x"I
nd
ep
en
d."
Se
t"

Sp
an
nin
g"F
ore
st"

Bre
ad
th"
Fir
st"
Se
arc
h"

De
lau
na
y"T
ria
ng
."

Tri
an
gle
"Ra
y"I
nte
r."

Ne
are
st"
Ne
igh
bo
rs"

Sp
ars
e"M

xV
"

Nb
od
y"

Su
ffix
"Ar
ray
"

T1/T32"
Tseq/T32"

32	Cores	off	the	shelf	machine

Parallel	machines	have	replaced	sequential	
machines,	but	parallel	algorithms	have	not	yet	
replaced	sequential	algorithms.	 Why?

More	likely	because	Parallel	Algorithms	are	
viewed as	hard,	messy,	and	theory	does	not	
match	practice.

1	Oct	15 10KIT	2015

Why	are	Sequential	Algorithms	
so	Successful?

• exactly	predict	runtimes?
• are	good	for	highly	tuning	optimized	codes?
• will	impress	our	friends?	

1	Oct	15 11KIT	2015

Maybe

Why	are	Sequential	Algorithms	
so	Successful?

1. Well	defined	and	simple	cost	model	which	is	
“good	enough”	for	asymptotic	comparisons

2. Simple	pseudocode and	small	step	to	real	code	
that	can	be	easily	compiled	and	run	to	get	
reasonably	efficient	code.

3. Good	for	explaining	core	ideas,	and	why	they	
are	useful

4. Sequential	algorithms	are	elegant

1	Oct	15 12KIT	2015

Page 13

Quicksort	(AHU78)
procedure QUICKSORT(S):
if S	contains	at	most	one	element	then	return S
else
begin
choose	an	element	a randomly	from	S;
let S1,	S2 and	S3 be	the	sequences	of

elements	in	S less	than,	equal	to,	
and	greater	than	a,	respectively;

return (QUICKSORT(S1)	followed	by	S2
followed	by	QUICKSORT(S3))

end
IC	2015

My	Focus

Parallel	algorithms	should	be	equally	elegant,	
simple,	efficient	in	practice,	and	efficient	in	
theory.
• Our	core	algorithms-complexity	course	at	
CMU	taught	to	all	Sophomores	now	uses	
parallelism	from	the	start.

1	Oct	15 14KIT	2015

Page 15

Quicksort	(Nesl)
function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];

IC	2015

Page 16

Quicksort	(nested	parallelism)
• Analyze	in	terms	or	Work	(W)	and	Depth	(D)

Depth = O(lg2 n)

IC	2015

Work = O(n lg n)

Time = W/P + D
P = # processors

Parallelism = W/D = O(n/ lg n)

Rest	of	Talk

• Sequential	Iterative	Algorithms
• Ligra:	A	graph	processing	framework

1	Oct	15 17KIT	2015

Sequential	Iterative	Algorithms

1	Oct	15 KIT	2015 18

for	i from	1	to	n
do	something;

Work	from	SPAA13,	SODA15

Sequential	Iterative	Algorithms

1	Oct	15 KIT	2015 19

for	i from	1	to	n
a[i]	=	b[i]	+	1;

Is	this	parallel?

parallelFor i from	1	to	n
a[i]	=	b[i]	+	1;

Sequential	Iterative	Algorithms

1	Oct	15 KIT	2015 20

for	i from	1	to	n
swap(A[rand(i)],A[i])

Is	this	parallel?

Sequential	Iterative	Algorithms

1	Oct	15 KIT	2015 21

for	i from	1	to	n
swap(A[rand(i)],A[i])

for	i from	1	to	n
SearchTreeInsert(T,A[i])

S[1..n]	=	0
for	i from	1	to	n

if	for	all	u	in	N(V[i]),	S[u]=0
then	S[v]	=	1	

Sequential	Iterative	Algorithms

1	Oct	15 KIT	2015 22

for	i from	1	to	m
u	=	F.find(E[i].u)
v	=	F.find(E[i].v)
if	(u	!=	v)	F.union(u,v)

Others:
• List	contraction
• Tree	contraction
• Maximal	Matching

Sequential	Iterative	Algorithms

Why	do	we	care	if	parallel?
– Simple	parallel	code
– Perhaps	fast	algorithms
– Intellectual	curiosity
– Determinism

How	do	we	analyze?

1	Oct	15 23KIT	2015

Iteration	Dependence	Graph

• Each	iterate	is	a	vertex
• ià j	means	iterate	i must	execute	before	iterate	j
• Can	execute	in	parallel	if	respecting	dependencies
• Graph	is	dependent	on	input	data
1	Oct	15 KIT	2015 24

for	i in	{0,…,n-1}
do	something;

0

2

3 4

6

5
Sequential	iterative	algorithm

1

Iteration	Dependence	Graph

1. what	is	depth	of	the	graph?
2. can	we	easily	detect	dependences?

1	Oct	15 KIT	2015 25

for	i from	1	to	n
do	something;

Sequential	iterative	algorithm
0

2

3 4

6

5

1

Random	Permutation	[Durstenfeld,	Knuth]

H	=

a b c d e f g h

0 0 1 3 1 2 3 1

A = a h c d e f g ba h c g e f d ba h f g e c d ba e f g h c d ba f e g h c d bf a e g h c d b

1	Oct	15 KIT	2015 26

0 1 2 3 4Iterate 5 6 7

for	i from	n	to	1
H[i]	=	rand(i)

for	i from	n	to	1
swap(A[H(i)],A[i])

Is	this	parallel?
H	=

a b c d e f g h

0 0 1 3 1 2 3 1

A =

1	Oct	15 KIT	2015 27

0 1 2 3 4Iterate 5 6 7

Is	this	parallel?
H	=

a b c d e f g h

0 0 1 3 1 2 3 1

A =

• “Swap	chains”	have	sequential	dependence

1	Oct	15 KIT	2015 28

0 1 2 3 4Iterate 5 6 7

Is	this	parallel?
H	=

a b c d e f g h

0 0 1 3 1 2 3 1

A =

• “Swap	chains”	have	sequential	dependence
• Each	location	that	is	the	target	of	multiple	
swaps	has	sequential	dependence

• Can	execute	multiple	iterates	in	parallel	as	
long	as	dependencies	are	respected

1	Oct	15 KIT	2015 29

0 1 2 3 4Iterate 5 6 7

Random	Permutation	Iteration	Depth
H	=

0

a b c d e f g h

0 0 1 3 1 2 3 1

A =

1

2

3

4

5

6

7

Dominance	Forest

0

1

2

3

4

5

6

7

Dependence	Forest

0

1

2

3

45

6

7

Linked	Dependence	Tree

1	Oct	15 KIT	2015 30

0 1 2 3 4Iterate 5 6 7

Random	Permutation	Iteration	Depth

H	=

a b c d e f g h

0 0 1 3 1 2 3 1

A =

0

1

2

3

45

6

7

0 0 1 3 1 2 3 1 ?

a b c d e f g h i

8

88

8 8

8

88

8

§ Each	value	of	H[8]	corresponds	to	
a	unique	location	in	binary	tree

§ All	possible	locations	equally	
likely

§ Corresponds	to	construction	of	a	
random	binary	search	tree!

H[8]	=	8

H[8]	=	3H[8]	=	6

H[8]	=	1
H[8]	=	7

H[8]	=	4
H[8]	=	2H[8]	=	5

H[8]	=	0

1	Oct	15 KIT	2015 31

0 1 2 3 4Iterate 5 6 7 8

Iteration	Depth
• Height	of	a	random	binary	search	tree	on	n	
nodes	is	θ(log	n)	w.h.p.	[Devroye ‘86]

• Therefore,	iteration	depth	of	random	
permutation	is	O(log	n)	w.h.p.

• Can	also	show	that	linear	work,	even	if	every	
node	tries	on	every	step

• Not	best:	O(log*	n)	depth	w.h.p.	[Hagerup ‘91]

1	Oct	15 KIT	2015 32

Detecting	Dependences

1	Oct	15 KIT	2015 33

for	i from	1	to	n
H[i]	=	rand(i)

parallelFor i from	1	to	n
R[H(i)]	=	i;	R[i]	=	i;					
if	R[H(i)]	==	i and	R[i]	==	i
then	swap(A[H(i)],A[i])
else	“try	again”

Priority	write

Performance

3x	slower	on	1	core
9x	faster	on	40	cores
1	Oct	15 34KIT	2015

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of threads

Times for random permutation on 1 billion elements

parallelRandPerm
serialRandPerm

Maximal	Independent	Set

Sequential	algorithm:
for i in 1 to n : S[i] = Undecided
for i in 1 to n

if for all j in N(V[i]), v < u, S[j] = Out
then S[j] = In
else S[j] = Out

1	Oct	15 35

X

12

3

9

5

4

7

8
6

10

x

x

xx

x

x

KIT	2015

Maximal	Independent	Set

Sequential	algorithm:
for i in 1 to n : S[i] = Undecided
for i in 1 to n

if for all j in N(V[i]), v < u, S[j] = Out
then S[j] = In
else S[j] = Out

Very	efficient:	most	edges	not	even	visited,	simple	loops
About	7x	faster	than	sorting	m	edges

1	Oct	15 36KIT	2015

Maximal	Independent	Set

Same	algorithm:	with	parallel	speculation
for i in 1 to n : S[i] = Undecided
for i in 1 to n

if for all j in N(V[i]), v < u, S[j] = Out
then S[j] = In
else S[j] = Out

1	Oct	15 37

X

12

3

9

5

4

7

8
6

10

x

x

xx

x

x

KIT	2015

Iteration	Depth/Performance

• For	random	ordering	of	vertices:	O(log2	n)
– Non	trivial,	for	arbitrary	degree
– O(log	n)	for	constant	degree

• Work	is	O(m)	if	using	prefixes
• Dependences	easy	to	detect.
• 12x	speedup	on	40	cores	over	sequential	
algorithm

1	Oct	15 38KIT	2015

MIS	Parallel	Code
struct MISStep {

bool reserve(int i) {
int d = V[i].degree;
flag = IN;
for (int j = 0; j < d; j++) {

int ngh = V[i].Neighbors[j];
if (ngh < i) {

if (Fl[ngh] == IN) { flag = OUT; return 1;}
else if (Fl[ngh] == LIVE) flag = LIVE; } }

return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;}};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative_for(MISStep(Fl, V), 0, n, psize);}

1	Oct	15 39KIT	2015

Maximal	Independent	Set

Costs:
– Span	=	O(log3 n)	

Expected	case	over	all	initial	permutations
– Work	=	O(m)	

if	prefix	size	=	O(n/dmax)
Determininistic :	

– result	only	depends	on	initial	permutation	of	
vertices

1	Oct	15 40KIT	2015

Part	2:	Ligra

A	Graph	Processing	Framework
– For	shared	memory
– Best	for	frontier-based	algorithms
– Space	and	Time	efficient
– Programming	efficiency
– Asymptotic	bounds	can	be	analyzed

41 KIT	20151	Oct	15

Breadth-first	Search	(BFS)

• Compute	a BFS	tree	rooted	at	source	r containing	all	
vertices	reachable	from	r

42

rr

Frontier

• Can	process	each	frontier	in	parallel
• Race	conditions,	load	balancing KIT	20151	Oct	15

BFS	Abstractly:	Frontier	Based

1. Operate	on	a	subset	of	vertices
2. Map	computation	over	subset	of	edges	in	parallel
3. Return	new	subset	of	vertices	
4. (Map	computation	over	subset	of	vertices	in	parallel)
BFS	visits	every	vertext once,	but	in	general	can	visit	many	
times.			Synchronous.

43

Can	we	build	an	abstraction	for	these	types	of	algorithms?

Breadth-first	search
Betweenness centrality
Connected	components
Delta	stepping

Bellman-Ford	shortest	paths
Graph	eccentricity	estimation
PageRank
Diameter	estimation

KIT	20151	Oct	15

Ligra

44

}

Graph

VertexSubset

EdgeMap

VertexMap

• Operate	on	a	subset	of	vertices
• Map	computation	over	subset	of	edges	in	parallel
and	return	new	subset	of	vertices

• (Map	computation	over	subset	of	vertices	in	parallel)

Other	graph	processing	frameworks:	Pregel/Giraph,	
GraphLab,	Pegasus,	Knowledge	Discovery	Toolbox,	GraphChi,	
Parallel	BGL,	and	many	others…

KIT	20151	Oct	15

Ligra	Framework

45

0 4 68VertexSubset

4

7

5
2

1

0

6

8

3

68VertexSubset

bool f(v){
data[v]	=	data[v]	+	1;
return	(data[v]	==	1);

}

4

0

6

8

VertexMap

KIT	20151	Oct	15

Ligra	Framework

46

4

7

5
2

1

0

6

8

3

0 4 68VertexSubset

VertexSubset

bool update(u,v){…}	

4

0

6

8

5 24 71

bool cond(v){…}	

F

7

5
2

1

4

T

T

T

T

T EdgeMap

KIT	2015

Why	edge	based?
• Parallel	over	the	edges
• Sparse/dense	(discussed	later)
1	Oct	15

Breadth-first	Search	in	Ligra

parents	=	{-1,	…,	-1};			//-1	indicates	“unvisited”

procedure	UPDATE(s,	d):
return	compare_and_swap(parents[d],	-1,	s);

procedure	COND(i):
return	parents[i]	==	-1; //checks	if	“unvisited”

procedure	BFS(G,	r):
parents[r]	=	r;
frontier	=	{r};	//VertexSubset
while	(size(frontier)	>	0):

frontier	=	EDGEMAP(G,	frontier,	UPDATE,	COND);
47

frontier

KIT	20151	Oct	15

EdgeMap:		Sparse	and	Dense

48

Loop	through	outgoing	edges	of	
frontier	vertices	in	parallel

procedure	EDGEMAP(G,	frontier,	Update,	Cond):
if	(|frontier|	+	sum	of	out-degrees	>	threshold)	then:

return	EDGEMAP_DENSE(G,	frontier,	Update,	Cond);
else:

return	EDGEMAP_SPARSE(G,	frontier,	Update,	Cond);

Loop	through	incoming	edges	of	
“unexplored”	vertices	(in	parallel),	
breaking	early	if	possible

• First	used	by	Beemer	for	BFS,	but	Ligra shows	that	useful	for	a	
wide	variety	of	algorithms

KIT	20151	Oct	15

Frontier	Plots

49 KIT	20151	Oct	15

Benefit	of	Sparse/Dense	Traversal

50

0
1
2
3
4
5
6
7
8
9

10

BFS Betweenness
Centrality

Connected
Components

Eccentricity
Estimation

40
-c

or
e

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Twitter graph (41M vertices, 1.5B edges)

Sparse

Sparse/Den
se

KIT	20151	Oct	15

Ligra	Performance

• Ligra	performance	close	to	hand-written code
• Faster	than	distributed-memory	on	per-core	basis	
• Several	shared-memory	graph	processing	systems	subsequently	

developed:	Galois	[SOSP	‘13],	X-stream	[SOSP	‘13],	PRISM	[SPAA	‘14],	
Polymer	[PPoPP ‘15],	Ringo [SIGMOD	‘15]51

0

1

2

3

4

5

6

Page	Rank				(1	
iteration)

BFS Connected	
Components

Ru
nn

in
g	
tim

e	
(s
ec
on

ds
)

Twitter	graph	(41M	vertices,	1.5B	edges)

GraphLab

Ligra	(40-core	machine)

Hand-written	Cilk/OpenMP	
(40-core	machine)

(64	x	8-cores)

(64	x	32-cores)
(16	x	8-cores)

244	seconds

KIT	20151	Oct	15

52

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Space relative to Ligra

Ligra

Ligra+

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

40-core time relative to Ligra

• Cost	of	decoding	on-the-fly?
• Memory	bottleneck	a	bigger	issue	as	graph	algorithms	
are	memory-bound

KIT	2015

Ligra+:	Adding	Graph	Compression	

1	Oct	15

