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Abstract—Memory bandwidth is a major limiting factor in
the scalability of parallel iterative algorithms that rely on sparse
matrix-vector multiplication (SpMV). This paper introduces
Hierarchical Diagonal Blocking (HDB), an approach which we
believe captures many of the existing optimization techniques for
SpMV in a common representation. Using this representation
in conjuction with precision-reduction techniques, we develop
and evaluate high-performance SpMV kernels. We also study the
implications of using our SpMV kernels in a complete iterative
solver. Our method of choice is a Combinatorial Multigrid
solver that can fully utilize our fastest reduced-precision SpMV
kernel without sacrificing the quality of the solution. We provide
extensive empirical evaluation of the effectiveness of the approach
on a variety of benchmark matrices, demonstrating substantial
speedups on all matrices considered.

I. INTRODUCTION

Iterative algorithms are often the method of choice for

large sparse problems. For example, specialized multigrid

linear solvers have been developed to solve large classes of

symmetric positive definite matrices [14, 44]. Many of these

solvers run in near linear time and are being applied to very

large systems. These algorithms heavily rely on the sparse

matrix-vector multiplication (SpMV) kernel, which dominates

the running time. As noted by many, the performance of

SpMV on large matrices, however, is almost always limited by

memory bandwidth. This is even more pronounced on modern

multicore hardware where the aggregate memory bandwidth

can be particularly limiting [46] when all the cores are busy.

Many approaches have been suggested to reduce the mem-

ory bandwidth requirements in SpMV: row/column reorder-

ing [38, 37], register blocking [41], compressing row or column

indices [45] , cache blocking [25, 46], symmetry [39], using

single or mixed precision [16], and reorganizing the SpMV

ordering across multiple iterations in a solver [35], among

others. Some of these approaches are hard to parallelize. For

example, the standard sparse skyline format for symmetric

matrices does not parallelize well.

In this paper, we suggest an approach we refer to as

hierarchical diagonal blocking (HDB) which we believe

captures many of the existing optimization techniques in a

common representation. It can take advantage of symmetry

while still being easy to parallelize. It takes advantage of

reordering. It also allows for simple compression of column
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indices. In conjunction with precision reduction (storing single-

precision numbers in place of doubles), it can reduce the overall

bandwidth requirements by more than a factor of three. It is

particularly well-suited for the type of problems that CMG is

designed for, symmetric matrices for which the corresponding

graphs have reasonably small graph separators, and for which

the effects of reduced precision arithmetic are well-understood.

Our approach does not use register blocking although this could

be added.

We prove various theoretical bounds for matrices for which

the adjacency structure has edge separators of size O(nα)
for α < 1. Prior work has shown a wide variety of sparse

matrices have a graph structure with good separators [8]. We

study the algorithm in the cache-oblivious framework [19],

where algorithms are analyzed assuming a two-level memory

hierarchy with an unbounded main memory and a cache of size

M and line size B. As long as the algorithm does not make

use of any cache parameters, the bounds are simultaneously

valid across all cache levels in a hierarchical cache. For an

n× n matrix with m nonzeros, we show that the number of

misses is at most m/B +O(1 + n/(Bw) + n/M1−α), where

w is the number of bits in a word.

We complement the theoretical results with a number of

experiments, evaluating the performance of various SpMV

schemes on recent multicore architectures. Our results show that

a simple double-precision parallel SpMV algorithm saturates

the multicore bandwidth, but by reducing the bandwidth

requirements—using a combination of hierarchical diagonal

blocking and precision reduction—we are able to obtain, on

average, a factor of 2.5x speedup on an 8-core Nehalem

machine. We also examine the implications of using the

improved SpMV routine in CMG and preconditioned conjugate

gradient (PCG) solvers. In addition, we explore heuristics

for finding good separator-orderings and study the effects of

separator quality on SpMV performance.

Reducing SpMV Bandwidth Requirements. Prior work

has proposed several approaches for reducing the memory

bandwidth requirements of SpMV. Reordering of rows and

columns of the matrix can reduce the cache misses on the

input and output vectors x and y by bringing references

to these vectors closer to each other in time [37]. Many

heuristic reordering approaches have been used, including graph

separators such as Chaco [24] or METIS [26], Cuthill-McKee
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reordering [20] or the Dulmage-Mendelsohn permutation [38].

These techniques tend to work well in practice since real-world

matrices tend to have high locality. This is especially true

with meshes derived from 2- and 3-d embeddings. Recent

results have shown various bounds for meshes with good

separators [6, 10, 11]. The graph structure of a wide variety

of sparse matrices has been to shown to have good separators,

including graphs such as the Google link graph. Reordering can

be used with cache blocking [25], which blocks the matrix into

sparse rectangular blocks and processes each block separately

so that the same rows and columns are reused.

Index compression reduces the size of the column and

row indices used to represent the matrix. The indices are

normally represented as integers, but there are various ways

to reduce their size. Willcok and Lumsdaine [45] apply graph

compression techniques to reduce the size, showing speedups of

up to 33% (although much more modest numbers on average).

Williams et al. point out that by using cache blocking, it is

possible to reduce the number of bits for the column indices

since the number of columns in the block is typically small [46].

Register blocking [41] represents the matrix as a set of dense

blocks. This can reduce the index information needed, but for

very sparse or unstructured matrices, it can cause significant

fill due to the insertion of zero entries to fill the dense blocks.

Data compression is a natural extension of index compression

that attempts to reduce the size of the actual data contained in

the matrix. For symmetric matrices, one can store the lower-

triangular entries and use them twice. When stored in the sparse

skyline format [39], (the compressed sparse row format with

only elements strictly below the diagonal stored) a simple loop

of the following form can be used:

// loop over rows.
for (i = 0;i < n;i++) {
float sum = diagonal[i]*x[i];

// loop over nonzeros below diagonal in row
for (j = start[i];j < start[i+1];j++) {
sum += x[cols[j]] * vals[j]; // as row
y[cols[j]] += x[i] * vals[j]; // as column

}
y[i] += sum;

}
Fig. 1: Simple sequential code for sparse matrix vector multiply

(SpMV).

Unfortunately, this loop does not parallelize well because of

the unstructured addition to an element in the result vector in the

statement y[cols[j]] += x[i] * vals[j];. Buluç et

al. study how to parallelize this by recursively blocking the

matrix [15], but this does not take advantage of any locality

in the matrix.

Another approach to data compression is to reduce the

number of bits used by the nonzero entries. Buttari et al. [16]

suggest the implementation of mixed-precision inner-outer iter-

ative algorithms, i.e. a nesting of iterative algorithms where the

outer iterative method is implemented in double precision, and

the inner one—formally viewed as a preconditioner to the outer

one—is implemented in single precision. While often positive,

the effects of reduced precision are in general unpredictable.

One main advantage of the CMG solver comparing to other

iterative methods is that it can be used as a preconditioner to

Conjugate Gradient, and the effects of using single precision

are well-understood.

Finally, recent work by Mohiyuddin et al. [35] suggests

reorganizing a sequence of SpMV operations on the same

matrix structure across iterations so that the same part of the

vector can be reused. Although this works well when using the

same matrix over multiple iterations, it does not directly help

in algorithms such as multigrid, where only a single iteration

on a matrix is applied before moving to another matrix of quite

different form.

II. PRELIMINARIES

Separators. Informally, a graph has nα, α < 1 edge separators

if there is a cut that partitions the graph into two almost equal

sized parts such that the number of edges between the two

parts is no more than nα, within a constant. To properly deal

with asymptotics and what it means to be “within a constant,”

separators are typically defined with respect to a infinite class

of graphs. Formally, let S be a class of graphs that is closed

under the subgraph relation (i.e., for G ∈ S , every subgraph of

G is also in S). We say that S satisfies an f(n)-edge separator
theorem if there are constants α < 1 and β > 0 such that every

graph G = (V,E) in S with n vertices can be partitioned into

two sets of vertices Va, Vb such that

cutSize(Va, Vb) :
def
= |E ∩ (Va × Vb)| ≤ βf(n)

where |Va|, |Vb| ≤ αn [32]. It is well-known that bounded-

degree planar graphs and graphs with bounded genus satisfy

an n1/2 edge separator theorem. It is also known that certain

well-shaped meshes in d dimensions satisfy a n(d−1)/d edge

separator theorem [34]. We note that such meshes allow

for features that vary in size by large factors (e.g. small

near a singularity and large where nothing is happening),

but require a smooth transition from small features to large

features. In addition, many other types of real-world graphs

have good separators, including, for example, a link graph

from Google [8].

Edge separators are often applied recursively to generate a

separator tree with the vertices at the leaves and the cuts at

internal nodes. Such a separator tree can be used to reorder the

vertices based on an in- or post- order traversal of the tree. It

is not hard to show that for graphs satisfying an nα separator

theorem, the tree can be fully balanced while maintaining the

O(nα) separator sizes at each node.

Separators have been used for many applications. The

seminal work of Lipton and Tarjan showed how separators

can be used in nested dissection to generate efficient direct

solvers [32]. Another common application is to partition data

structures across parallel machines to minimize communication.

It has also been used to compress graphs [7] down to a linear
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number of bits. The idea is that if the graph is reordered using

separators, then most of the edges are ‘short’ and can thus be

encoded using fewer bits than other edges. In this paper, we

extend this to show that HDB also compresses graphs down

to a linear number of bits.

Cache Oblivious Algorithms. The goal of the cache oblivious

approach for analyzing algorithms is to analyze the cache cost

on a simple single-level cache and then use the results to

imply good performance bounds on a variety of hierarchical

caches [19]. The ideal-cache model is used for analyzing

cache costs. It is a two-level model of computation consisting

of an unbounded memory and a cache of size M . Data are

transferred between the two levels using cache lines of size B;

all computation occurs on data in the cache. The model can

run any standard computation designed for a random access

machine on words of memory, and the cost is measured in

terms of the number of misses incurred by the computation.

This cost, often denoted by Q(C;B,M), is referred to as the

cache complexity for a computation C.

An algorithm is cache oblivious in the ideal-cache model

if it does not take into account the size of M or B (or any

other features of the cache). If a cache oblivious algorithm A
has cache complexity Q(A;B,M) on a machine with block

size B and cache size M , then on a hierarchical cache with

cache parameters (Mi, Bi) at level i, the algorithm will suffer

at most Q(A;Mi, Bi) misses at each level i. Therefore, if

Q(A;Mi, Bi) is asymptotically optimal for B and M , it is

optimal for all levels of the cache.

Parallel Cache Oblivious Algorithms. The cache oblivious

model was designed for analyzing sequential algorithms, but it

has recently been extended to analyze parallel algorithms [11].

For nested parallel computations (ones with nested parallel

loops and fork joins), one can analyze the algorithm using

a sequential ordering and then use general results to bound

cache misses on parallel machines with either shared or

private hierarchical caches. In particular, for a shared-memory

parallel machine with private caches (each processor has its

own cache) using a work-stealing scheduler, Qp(A;M,B) <
Q(A;M,B) + O(pMD/B) with probability 1− δ [3],1 and

for a shared cache using a parallel-depth-first (PDF) scheduler,

Qp(A;M+pBD,B) ≤ Q(A;M,B) [9], where D is the depth

of the computation and p the number of processors. In a nested

parallel computation, the depth (also known as critical path, or

span) is defined inductively by taking the maximum over the

depth of parallel calls and summing across sequential calls.

Therefore, the overall paradigm is to design nested parallel

algorithms with reasonably low depth and for which the cache

complexity is low in the ideal cache model. Controlling the

depth is important as it appears in the bounds. In the context

of sparse-matrix vector matrix multiply, the following has

been shown for the Compressed Sparse Row (CSR) SpMV

algorithm.

1In this paper, δ is an arbitrarily small positive constant.

Level 1

Level 2

Level 3

Fig. 2: Hierarchical diagonal blocking: decomposing a matrix

into a tree of submatrices.

Theorem 1 (Blelloch et al. [10]). Let M be a class of matrices
for which the adjacency graphs satisfy an nα-edge separator
theorem with α < 1. Any n× n matrix A ∈ M with m ≥ n
nonzeros can be reordered so the CSR SpMV algorithm has
O(log n) depth and O(1+m/B+n/M1−α) sequential cache
complexity.

For B ≤ M1−α (likely in practice), the m/B term dominates

so the number of cache misses is asymptotically optimal (no

more than needed to scan the array entries in order).

III. HIERARCHICAL DIAGONAL BLOCKING SPMV

In this section, we describe the hierarchical diagonal
blocking (HDB) representation for sparse square matrices and

an SpMV routine for the representation. We assume that we

have already computed a fully balanced tree of edge-separators

for the graph of the matrix, with the vertices as leaves. In the

following discussion, we assume the rows of the square matrix

are ordered by left-to-right pass over the leaves (the separator

ordering), and since the matrix is square, we will use row to

refer to both the row and corresponding column.

The HDB representation is a partitioning of the matrix into a

tree of submatrices (see Figure 2). Each leaf represents a range

of rows (possibly a single row), and each internal node of the

tree represents a continuous range of rows it covers. Nonzero

entries of the matrix are stored at the least common ancestor of

the leaves containing its two indices (row and column). If both

indices are in the same leaf, then the element will be stored at

that leaf (all diagonal entries are at a leaf). The representation

stores with each internal node the range of rows it covers, and

we refer to the number of rows in the range as the node’s size.

The separator tree can be used directly as the structure

of the HDB tree. This, however, creates many levels which

help neither in theory nor in practice. Instead, we coalesce

the nodes of the separator tree so that sizes square at each

level: 2, 4, 16, 256, 65536, . . . , 22
i

. We maintain the separator

ordering among the children of a node. This is important for the

cache analysis. We note that for matrices with good separators

most of the entries will be near the leaves.

The SpMV routine on the HDB representation works as

shown in Algorithm 1. The recursive algorithm takes as

arguments the input vector x, the output vector y, and a

subtree/internal node T . The algorithm requires that the

ordering of the x and y vectors coincide with the separator

(matrix) ordering. We denote by [�, u] the range of rows the
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Algorithm 1 Sparse Matrix Vector Multiply for HDB

HDB SpMV(x, y, T ):

1: A = T.M // the nonzero entries in this node of T
2: [�, u] = T.range
3: if isLeaf(T ) then
4: y[�, u] = A · x[�, u]
5: else
6: for all t ∈ T .children, in parallel, do
7: HDB SpMV(x, y, t)
8: end for
9: y[�, u] = y[�, u] +A · x[�, u]

10: end if

subtree covers. The algorithm computes the contribution to y
for-all nonzero entries in the subtree. In the base case, it directly

calculates the contribution. In the inductive case, each recursive

call in the for all loop computes the contribution for the entries

in its subtree. Since each of these is on a distinct range of

rows, all the calls can be made in parallel without interference.

After returning from the recursive calls, the algorithm adds

in the contribution for the entries in the current node, hence

accounting for the contribution of all entries in the subtree.

An important feature of HDB is that it gives freedom in

the selection of the matrix representation A and corresponding

SpMV algorithm used for each node of the tree. In particular,

depending on the level, different representations can be used.

If A in some node has many empty rows in its range, we need

store only the non-empty rows. This can easily be done using

an additional index vector of non-empty rows as is often done

in cache-blocked algorithms [46]. If the matrix is symmetric,

then we can keep just the lower triangular part and store it

in Compressed Sparse Row (CSR) format. For a submatrix

stored in this form, we can use the skyline algorithm given in

Figure 1 and for internal nodes, we need not even worry about

diagonals. Since the skyline algorithm is difficult to parallelize,

it can be used sequentially at lower levels of the tree where

there is plenty of parallelism from the recursive calls, and the

CSR representation with redundant entries can be used at the

higher levels. This works both in theory (proof of Theorem 2)

and in practice (Section V). Another important feature of HDB

is that space can be saved in storing the indices by only storing

an offset relative to the beginning of the range. Again, this is

used both in theory (Theorem 2) and practice (Section V).

We now bound space, cache complexity, and depth for

HDB SpMV for matrices with good separators. We assume

that each nonzero value takes one word of memory. Therefore,

B nonzeros fit in a cache line (this is just the values and not

any indices). We assume a word has w bits in it.

Theorem 2. Let M be a class of matrices for which the
adjacency graphs satisfy an nα-edge separator theorem, α < 1,
and A ∈ M be an n × n matrix with m ≥ n nonzeros, or
m ≥ n lower triangular nonzeros for a symmetric matrix. If
A is stored in the HDB representation T then:

1) T can be implemented to use m+O(n/w) words.

2) Algorithm HDB SpMV(x, y, T ) is cache oblivious and
runs with m/B +O(1 + n/(Bw) + n/M1−α) misses in
the ideal cache model.

3) Algorithm HDB SpMV(x, y, T ) runs in O(logc n) depth
(span) for some constant c.

Proof: We will use a modified CSR representation for all

matrices stored in the tree. For symmetric matrices, we only

store the lower triangular entries and diagonals for nodes of

size r < log1/(1−α) n, and all entries for larger nodes. The

idea is that the number of entries in the larger matrices is

small enough that we can store them twice or use a pointer to

the second copy without significantly affecting space or cache

complexity. As mentioned above, we modify CSR so it does

not store any information for empty rows.
Consider a matrix at a node of T with size r and with

e entries assigned to it. Because the range of columns is

bounded by r, all column and row indices can be stored relative

to the lower bound of the range using O(log r) bits. This

means the matrix can be stored in ew bits for the values

and O(e log r) bits for the indices. We also need to store the

pointers to the children of the node. For this, we assume that

the memory for nodes are allocated one after another in a

postorder traversal of the tree. This means to point to a child

the structure only has to point within the memory used by

this subtree. This is certainly bounded by O(wr2) bits and

therefore we can use a O(log r) bit pointer for each child.

We can also use O(log r) bits to specify the range limits

of each child, which we charge to the parent even though

stored with the child. Therefore, the total space required by

the node with c children is ew + O((e + c) log r). Now if

we organize the tree so the nodes grow doubly exponentially

ri = 22
i

, (2, 4, 16, 256, 65536, . . .), a node at level i captures

all edges that were cut in the binary separator tree above

size 22
i−1

and up to 22
i

. Using the separator bounds, and

counting per pairwise split, we have for a node at level i,

ei =
∑2i

j=2i−1+1 η(j) × O(2αj), where η(j) = 22
i−j is the

number of splits at the binary tree level j. This sum is bounded

by O(22
α(i−1)

22
i−1

) = O(22
α(i−1)+2i−1

) since the terms of the

sum geometrically decrease with increasing j. We also have

ci = 22
i−1

for the number of children at level i. There are

n/ri nodes at level i and therefore the total space in bits for

pointers is bounded by:

S(n) =

log logn∑
i=0

O

(
n

ri
(ei + ci) log ri

)

=

log logn∑
i=0

O
( n

22i
(2(2

α(i−1)+2i−1) + 22
i−1

)2i
)

For α < 1, this sum geometrically decreases, so for asymp-

totic analysis, we need only consider i = 0 and therefore

S(n) = O(n). When we include the space for the matrix

values and convert from bits to words, the total space is

m + O(n/w). We note that we can store matrices with size

r ≥ log1/(1−α) n using two nonzeros per symmetric entry

without affecting the asymptotic bounds. This is because there

4



are at most O(n/ log n) nonzeros in matrices of that size so

we can use a pointer of size O(log n) bits to point to the other

copy, or if w = O(log n), we can store the duplicates directly.

We now consider bounds on the sequential cache complexity.

The argument is similar to the argument for the CSR for-

mat [10]. We separate the misses into the accesses to the matrix

entries and to the input and output vectors x and y. Recall that

all tree nodes are stored in post-order with respect to the tree

traversal, and at the nodes, the elements within each matrix

are stored in CSR format. Since the CSR algorithm visits the

matrix in the order it is stored, the algorithm visits all elements

in the order they are laid out. When including the O(n/w)
words for indices in the structure, which are also visited in

order, visiting the matrix causes a total of m/B+O(n/(Bw))
misses. For larger nodes in the tree where r ≥ log1/(1−α) n,

we store duplicate entries, but for the same reason, this is a

lower order term in the space and also a lower order term in

cache misses. This leaves us to consider the number of misses

from accessing x and y. For the sake of analysis, we can

partition the leaves into blocks that fit into the cache, where

each such block is executed in order by the algorithm. We

therefore only have to consider edges that go between blocks.

By the same argument as in [10], the number of such edges

(entries) is bounded by O(n/M1−α) each potentially causing

a miss. The total number of misses is therefore bounded by

m/B +O(1 + n/(Bw) + n/M1−α).
Finally, we consider the depth of the algorithm. We assume

that the SpMV for all nodes of size r ≥ log1/(1−α) n run in

parallel since they are stored with both symmetric entries. Such

a SpMV runs in O(log n) depth. For r < log1/(1−α) n, we

run the SpMV on the skyline format sequentially. The total

time is bounded asymptotically by the size, and all these small

multiplies can run in parallel. This is the dominating term

giving a total depth of O(log1/(1−α) n). �

IV. COMBINATORIAL MULTIGRID

To study how the improvements in SpMV performance

benefit an actual iterative method, we consider Combinatorial

Multigrid (CMG), a recently introduced variant of Algebraic

Multigrid (AMG) [28, 29, 30] providing strong convergence

guarantees for symmetric diagonally dominate linear sys-

tems [27, 40, 28, 30, 31]. Our choice is motivated by the

potential for immediate impact on the design of industrial

strength code for important applications. In contrast to AMG,

CMG offers strong convergence guarantees for the class of

symmetric diagonally dominant (SDD) matrices [23, 13, 4],

and under certain conditions for the even more general class

of symmetric M -matrices [17]. The convergence guarantees

are based on recent progress in spectral graph theory and

combinatorial preconditioning (see for example [12], [27]).

At the same time, linear systems from these classes play an

increasingly important role in a wave of new applications

in computer vision [21, 42, 30], and medical imaging in

particular [43]. Multigrid algorithms are commonly used

as preconditioners to other iterative methods. The idea of

implementing the preconditioner in single precision has been

explored before, but the effects on convergence are in general

unpredictable [16]. However, in the case of CMG, switching to

single precision has provably no adverse effects. In summary,

CMG can benefit from our fastest SpMV primitive, which

exploits both symmetry and precision reduction, in applications

that are well suited for the diagonal hierarchical blocking

approach.
A thorough discussion of multigrid algorithms is out of the

scope of this paper. There are many excellent survey papers

and monographs on various aspects of the topic and among

them [14, 44]. The purpose of this section is to discuss aspects

of the parallel implementation that are specific to CMG, but

at the same time, convince the reader that the performance

improvements we see for CMG are expected to carry over to

other flavors of multigrid.

A. CMG Description and Parallel Implementation Details
Similarly to AMG, the CMG algorithm consists of the setup

phase which computes a multigrid hierarchy, and the solve

phase. The CMG setup phase constructs a hierarchy of SDD

matrices A = A0, . . . , Ai. As with most variants of AMG,

CMG uses the Galerkin condition to construct the matrix Ai+1

from Ai. This amounts to the computation of a restriction

operator Ri ∈ R
dim(Ai)×dim(Ai+1), and the construction of

Ai+1 via the relation Ai+1 = RT
i AiRi. CMG constructs the

restriction operator Ri by grouping the variables/nodes of Ai

into dim(Ai+1) disjoint clusters and letting R(i, j) = 1 if

node i is in cluster j, and R(i, j) = 0 otherwise. This simple

approach is known as aggregate-based coarsening, and it has

recently attracted significant interest due to its simplicity and

advantages for parallel implementations [22, 36]. Classic AMG

constructs more complicated restriction operators that can be

viewed as (partially) overlapping clusters. The main difference

between CMG and other AMG variants is the algorithm for

clustering, which in the CMG case is combinatorially rather

than algebraically driven. The running time of the CMG setup

phase is negligible comparing to the actual MG iteration, so

we do not further discuss it in this paper. The reader can find

more details in [30].

Algorithm 2 The CMG Solve Phase

function xi = CMG(Ai, bi)

1: D = diag(A)
2: ri = bi −Ai(D

−1b)
3: bi+1 = Rri
4: z = CMG(Ai+1, bi+1)
5: for i = 1 to ti − 1 do
6: ri+1 = bi+1 −Ai+1z
7: z = z + CMG(Ai+1, ri+1)
8: end for
9: x = RT z

10: x = ri −D−1(Aix− b)

The solve phase of CMG, which is dominated by SpMV

operations, is quite similar to the AMG solve phase; the pseudo-

code is given in Figure 2. When ti = 1, the algorithm is known
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in the MG literature as the V-cycle, while when ti = 2, it is

known as the W-cycle. It has been known that the aggregate-

based AMG does not exhibit good convergence for the V-cycle.

The theory in [27] essentially proves that more complicated

cycles are expected to converge fast, without blowing up the

total work performed by the algorithm. This is validated by

our experiments with CMG where we pick

ti = max
{⌈ nnz(Ai)

nnz(Ai+1)
− 1

⌉
, 1
}
.

Here nnz(A) denotes the number of nonzero entries of A. This

choice for the number of recursive calls, combined with the

fast geometric decrease of the matrix sizes, targets a geometric

decrease in the total work per level.

In our parallel implementation, we optimized the CMG solve

phase by using different SpMV implementations for different

matrix sizes. When the matrix size is larger than 1K, we use

the blocked version of SpMV, and when it is smaller than

that, we resort to the plain parallel implementation, where the

matrix is stored in full and we compute each row in parallel.

The reason is that the blocked version of SpMV has higher

overhead than the simple implementation for smaller matrices.

In our experiments, we found that a choice of t′i = ti +
1 improves (in some examples) the sequential running time

required for convergence by as much as 5%. However, it

redistributes work to lower levels of the hierarchy where, as

noted above, the SpMV speedups are smaller. As a result, the

overall performance gains for CMG are less significant with

this choice.

B. Single vs. Double Precision CMG

The CMG solve phase is the implicit inverse of a symmetric

positive operator B. The condition number κ(A,B) can there-

fore be defined, and it is well-understood that it characterizes

the rate of convergence of the preconditioned CG iteration [5].

Recall that the CMG core works with the assumption that the

system matrix A is SDD. We form a single precision matrix Â
from the double precision matrix A as follows; we decompose

A into A = D + L, where L has zero (in double precision)

row sums and D is a diagonal matrix with non-negative entries.

We form D̃ by casting the positive entries of D into single

precision. We form L̃ by casting the off-diagonal entries of

L into single precision, adding them in the order they appear

using single precision, and then negating the sum and setting

it to the corresponding diagonal entry of L̃. Finally, we let

Ã = D̃+ L̃. This construction guarantees that Ã is numerically

diagonally dominant and thus positive definite.

Substituting a double-precision hierarchy A0, . . . , Ad by

its single-precision counterpart Ã0, . . . , Ãd in effect changes

the symmetric operator B to a new operator B̂, which is also

symmetric. By an inductive (on the number of levels) argument,

it can be shown that

κ(B, B̃) ≤ max
i

κ(Ai, Ãi).

Using the Splitting Lemma for condition numbers [12], it is

easy to show that

κ(A, Ã) ≤
(
max

i

{
Di,i

D̃i,i

,
D̃i,i

Di,i
,max

j �=i

{
|Li,j |
|L̃i,j |

,
|L̃i,j |
|Li,j |

}})2

.

Under reasonable assumptions for the range of numbers used

in A, we get κ(B, B̃) < 1 + 10−7. Using the transitivity of

condition numbers, we get

κ(A, B̃) ≤ κ(A,B)κ(B, B̃) ≤ κ(A,B)(1 + 10−7).

It is known that the condition number of a pair (A,B) is the

ratio of the largest to the smallest generalized eigenvalue of

(A,B). The above inequality can in fact be extended to show

that each generalized eigenvalue of the pair (A,B) is within a

(1 + 10−7) factor of the corresponding generalized eigenvalue

of (A, B̃). Thus, the preconditioned CG is expected to have

an almost identical convergence, independent of whether B or

B̃ is the preconditioner.

V. IMPLEMENTATION AND EVALUATION

This section describes an implementation of an SpMV based

on hierarchical diagonal blocking and a study of its performance

compared to other related variants.

A. Implementation of SpMV

We implemented SpMV routines for symmetric matrices

using the descriptions from Section III. The implementation

stores a matrix as groups of on-diagonal entries, diagonal-block

entries, and off-block entries (similar to Figure 2 with only

2 inner-node levels and a level of leaf nodes). The diagonal

blocks in the first level are ∼ 32K in size (to take advantage

of caching) and the leaves correspond the singletons along

the matrix’s diagonal. This representation allows for a simple

implementation which delivers good performance in practice.

The two main ideas from previous sections are precision

reduction and diagonal blocking. To understand the benefits

of these ideas individually, we study the following variants:

the sequential program using double-precision numbers “seq.

(double)” is our baseline implementation (more details below).

The simple parallel program for double-precision numbers

“simple par. (double)” computes the rows in parallel. The

corresponding version for single-precision numbers is known as

“simple par. (single).” We have two variants of the hierarchical

diagonal blocking routines, one for double-precision numbers

“blocked par. (double)” and one for single-precision numbers

“blocked par. (single)”. The names inside quotation marks are
abbreviated names used in all the figures.

The baseline implementation is a simple sequential program

similar to what is shown in Figure 1. We optimized the code

slightly by applying one level of loop-unrolling to the inner

loop. Note that although the code is simple, its performance

matches, within 1%, that of highly optimized kernels for SpMV,

such as Intel Math Kernel Library [2]. We decided to work with

our own implementation because of the flexibility in changing

and instrumenting the code (e.g., for collecting statistics).
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All versions of our parallel programs were written in Cilk++,

a language similar to C++ with keywords that allow users to

specify what should be run in parallel [1]. Cilk++’s runtime

system relies on a work-stealing scheduler, a dynamic scheduler

that allows tasks to be rescheduled dynamically at low overhead

cost. Our benchmark programs were compiled with Intel Cilk++

build 8503 using the optimization flag -O2. To avoid overhead

in the Cilk++’s runtime system, we compiled the baseline

sequential programs with GNU g++ version 4.4.1 using the

optimization flag -O2.2

B. Experimental Setup

Testbed. We are interested in understanding the performance

characteristics of SpMV and CMG solvers on three recent

machine architectures: the Nehalem-based Xeon, the Intel

Harpertown, and the AMD Opteron Shanghai. A brief summary

of our test machines is presented in Table I. Our measurements

were taken with hyperthreading turned off. Even though

hyperthreading gives a slight boost in performance (though

less than 5%), the timing numbers were much more reliable

with it turned off.

Machine Model Speed Layout Agg. Bandwidth

(Ghz) (#chips×#cores) 1 core 8 cores

Intel Nehalem X5550 2.66 2× 4 10.5 27.9
Intel Harpertown E5440 2.83 2× 4 2.8 6.4
AMD Shanghai 2384 2.70 2× 4 4.9 10.7

TABLE I: Characteristics of the architectures used in our study,

where clock speeds are reported in Ghz and 1- and 8-core

aggregate bandwidth numbers in GBytes/sec. For the aggregate

bandwidth, we report the performance of the triad test in the

University of Virginia’s STREAM benchmark [33], compiled

with gcc -O2 and using gcc’s OpenMP.

Among these architectures, the Intel Nehalem is the current

flagship, which shows significant improvements in bandwidth

over prior architectures. For this reason, this work focuses on

our performance on the Nehalem machine; we include results

for other architectures for comparisons as our techniques benefit

other architectures as well.

Datasets. Our study involves a diverse collection of large

sparse matrices, gathered from the University of Florida Matrix

Collection [18] and a collection of mesh matrices generated

by applications in vision and medical imaging. We present

a summary of these matrices in Table II. These matrices are

chosen so that for the majority of them, neither the vectors nor

the whole matrix can fit entirely in cache; smaller matrices are

also included for comparison.

For the CMG experiments, since the CMG solver requires

the input matrix to be SDD, we replace each off-diagonal entry

with a negative number of the same magnitude, and we adjust

the diagonals to get zero row-sums. The perturbation does not

affect the SpMV performance, as the matrix structure remains

2We have also experimented with the Intel compiler and found similar
results.

Matrix #rows/cols #nonzero

2d-A 999,999 4,995,995
3d-A 999,999 6,939,993
af shell10 1,508,065 52,672,325
audikw 1 943,695 77,651,847
bone010 986,703 71,666,325
ecology2 999,999 4,995,991
nd24k 72,000 28,715,634
nlpkkt120 3,542,400 96,845,792
pwtk 217,918 11,634,424

TABLE II: Summary of matrices used in the experiments.

unchanged, but it allows us to study the performance of CMG

on various sparse patterns.

All matrices in the study are ordered in the best possible
ordering we are able to find. Each matrix is reordered using

a number of heuristics and we keep the ordering that yields

the best baseline performance. For each matrix, we use the

same ordering when comparing SpMV schemes. We discuss

the effects of separator quality in Section V-E.

C. Performance of SpMV

The first set of experiments concerns the performance of

SpMV. In these experiments, we are especially interested in

understanding how the ideas outlined in previous sections

perform on a variety of sparse matrices.

Throughput. Figure 3 and Table III show the performance (in

GFlops) and the speedup achieved by various SpMV routines

on the matrices in our collection. Several things are clear. First,

on all these matrices, a simple parallel algorithm speeds up

SpMV by 3.4x–4.5x. In fact, without any data reduction, we

cannot hope to improve the performance much further, because

as will be apparent in the next discussion, the simple parallel

algorithm operates near the peak bandwidth.

Matrix Speedup Speedup
simple par. (double) blocked par. (single)

2d-A 3.9x 7.1x
3d-A 3.7x 7.6x
af shell10 4.3x 11.3x
audikw 1 4.0x 11.0x
bone010 3.7x 9.7x
ecology2 3.4x 6.2x
nd24k 3.9x 9.6x
nlpkkt120 3.8x 8.4x
pwtk 3.7x 10.1x
thermal2 4.5x 7.3x

TABLE III: Speedup numbers of parallel SpMV on an 8-core

Nehalem machine as compared to the sequential baseline code.

Second, but more importantly, both hierarchical diagonal

blocking and precision reduction can help enhance the speed

of SpMV, but neither idea alone yields as much performance
improvement as their combination. By replacing double-

precision numbers with single-precision numbers, we use 4
bytes per matrix entry instead of 8. Furthermore, by using

the hierarchical diagonal blocking with the top-level block

size ∼ 32K, we can represent the indices of the entries in

the diagonal blocks using 16-bit words, a saving from 32-bit
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Fig. 3: Performance of different SpMV routines (in GFlops) on a variety of matrices.

words used to represent matrix indices in a normal CSR format.

Diagonal blocking can also take advantage of symmetry: each

digonal blocks can be stored in the skyline format, which halves

the number of entries (both indicies and values) we have to

store. Combining these ideas, we not only further reduce the

bandwidth but also improve the cache locality due to blocking.

Shown in Table IV is the memory footprint of the different

representations. By applying the blocking on these matrices,

the footprint can be reduced by more than 1.5x and can be

further reduced by precision reduction. This is reflected in

the additional speedup of more than 2x in the speedup of the

single-precision blocked parallel version over the speedup of

the simple double-precision parallel code.

Matrix Memory Access (MBytes)

CSR/double blocked/double blocked/single

2d-A 80 56 36
3d-A 103 67 43
af shell10 657 313 193
audikw 1 951 426 261
bone010 880 404 251
ecology2 80 56 36
nd24k 346 164 106
nlpkkt120 1212 589 367
pwtk 143 65 40
thermal2 128 85 55

TABLE IV: Total memory accesses (in MBytes) to perform

one SpMV operation using different representations.

Scalability. Presented in Figures 4 and 5 are speedup and

bandwidth numbers for different SpMV routines. The speedup

on i cores is how much faster a program is on i cores than on

1 core running the same program. First and most importantly,

blocked parallel single precision scales the best on all three
machines. On the Nehalem, it achieves a factor of almost

7x compared to approximately 4x for the simple double-

precision parallel SpMV. Furthermore, the trend is similar

between Nehalem and Shanghai, which both have more memory

channels and higher bandwidth than the Harpertown. On the

Harpertown, all the benchmarks saturate at 4 cores, potentially

due to the limited bandwidth.

Second, reducing the memory footprint (hence the bandwidth

requirement) is key to improving the scalability. As Figure 5

shows, the simple parallel SpMV seems to be compute bound

on 1 core but runs near peak bandwidth on 8 cores, suggesting

that further performance improvement is unlikely without

reducing the bandwidth requirements. But, as noted earlier, the

blocked schemes have substantially smaller memory footprint

than the simple scheme. For this reason, the blocked schemes

are able to achieve better FLOPS counts and scalability even

though they do not operate near the peak bandwidth.

D. Performance and Convergence of CMG

Figure 6 shows the performance of one call to three CMG

programs, differing in the SpMV kernel used. The precision

of scalars and vectors used by CMG match that of its SpMV

kernel. In the parallel implementations, vector-vector operations

in the CMG programs are also parallelized, when possible, in

a straightforward manner.

From the figure, two things are clear. First, the speedup—

the ratio between the performance of the baseline sequential

program and the parallel one—varies with the linear system

being solved; however, on all datasets we consider here, the

speedup is more than 3x, with the best case reaching beyond

6x. Second, the speedup of the CMG solver seems to be

proportional to the speedup of SpMV, but not as good. This

finding is consistent with the fact that the largest fraction of

the work is spent in SpMV, while part of the work is spent

on operations with more modest speedups (e.g., vector-vector

operators and SpMV operations on smaller matrices).

The CMG is used as a preconditioner in a Preconditioned

Conjugate Gradients (PCG) iteration. In Table V, we report the

number of PCG iterations required to compute a solution x such

that the relative residual error satisfies ‖Ax− b‖/‖b‖ < 10−8,

for various matrices and three different b-sides. The first column

corresponds to a random vector b, the second to Ab and the

third to an approximate solution of Ax = b, for the same

random b. We note that the reported convergence rates are

preliminary. Improvements may be possible as long as the

hierarchy construction abides by the sufficient and necessary
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Fig. 4: Speedup factors of SpMV on Intel Nehalem X5550, AMD Shanghai 2384, and Intel Harpertown E5440 as the number

of cores used is varied.
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Fig. 6: Performance of a CMG solve iteration (in GFlops) on different linear systems.

conditions reported in [29]. One call to CMG is on average

5–6 times slower than one call to SpMV. Most of the matrices

have a particularly bad condition number and standard CG

without preconditioning would require thousands of iterations

to achieve the same residual error.

As predicted by the theory in Section IV-B, CG precondi-

tioned with double-precision CMG is virtually indistinguishable

from CG preconditioned with single-precision CMG; the

number of iterations for convergence differs by at most 1 in all

our experiments. We have also found that further improvements

can be found by using a single-precision implementation of

CG to drive the error down to 10−6 and then switching to

the double-precision mode. In Table V, we report the running

Matrix #iterations PCG run time per call

random b Ab A+b P-single-CG P-double-CG

2d-A 42 34 48 24.15 31.1
3d-A 37 32 37 24.3 31.5
af shell10 26 23 30 195.3 231.3
audikw 1 19 15 17 205.0 245.8
ecology2 49 37 55 25.5 32.2
nlpkkt120 26 20 28 203.2 256.8

TABLE V: PCG: number of iterations required for convergence

of error to 10−8 and running time per call in milliseconds.

times of one call to PCG, with CG implemented in single
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Fig. 7: Performance of SpMV routines (in GFlops) with different ordering heuristics.

precision and double precision—the preconditioner CMG is

implemented consistently in single precision.

E. Effects of Separator Quality

Our results thus far rely on the assumption that the input

matrices are given in a good separator-ordering. Often, however,

the matrices have good separators but are not prearranged in

such an ordering. In this section, we explore various heuristics

for computing a good separator-ordering and compare their

relative performance with respect to SpMV.

We begin by defining two abstract measures of the quality

of an ordering. The first measure, called the �-distance, is

inspired by previous work on graph compression using separator

trees [7]. The �-distance is an information-theoretic lower bound

on the average number of bits needed to represent the index

of an entry. This measure therefore indicates how well the

ordering compresses. Formally, for a matrix M ,

�(M) :=
1

#nnz

∑
(i,j)∈M

log2 |i− j + 1|.

Simpler than the first, the second measure—denoted by “off”—

is simply the percentage of the nonzero entries that fall off the

first-level blocks. This measure tells us what fraction of the

nonzero elements has to resort to the simple parallel scheme

and cannot benefit from the blocks.

As we already discussed in Section III, at the heart of a

separator ordering is a separator tree—a fully balanced tree

of edge-separators for the graph of the matrix. For the study,

we consider the following graph-partitioning and reordering

heuristics: (1) “local,” a bottom-up contraction heuristic (known

in the original paper as bu) [7]; (2) METIS, an algorithm which

recursively applies the METIS partitioning algorithm [26]; and

(3) a random ordering of the vertices.

Table VI shows statistics for these heuristics on three of the

matrices used in previous sections. On both the �-distance and

off-block measures, it is clear that METIS produces superior

orderings than the local heuristic does on all of the matrices

considered; however, the local heuristic is significantly faster

than METIS, both running sequentially—and as we will see

next, both schemes yield comparable SpMV performance.

In terms of parallelization potential, we were unable to run

parMETIS on our Nehalem machine. Yet, the local heuristic

shows good speedup running on 8 cores, finishing in under 3
seconds on the largest matrix with almost 100 million entries

and exhibiting more than 5x speedup over 1 core.

Matrix nnz/row Random Local METIS
(avg.) � off � off T1 T8 � off T1

audikw 1 82.3 17.5 92.6% 7.6 9.0% 11.1 1.9 6.8 3.6% 76.1
nd24k 399.0 13.9 93.5% 9.5 36.1% 5.0 0.8 8.5 21.4% 12.0
nlpkkt120 26.9 19.2 96.6% 7.5 11.9% 15.3 2.6 6.3 5.3% 230.5

TABLE VI: Statistics about different ordering heuristics: � is

the �-distance defined in Section V-E and off is the percentage

of the entries that fall off the diagonal blocks. The timing

numbers (in seconds, T1 for the sequential code and T8 for

the parallel code on 8 cores) on the Nehalem are reported.

We show in Figure 7 how the different ordering heuristics

compare in terms of SpMV performance. First but unsurpris-

ingly, the random ordering, which we expect to have almost

no locality, performs the worst on all three SpMV algorithms.

Second, as can be seen from the stark difference between

the random ordering and the other two schemes, a good

separator-ordering benefits all algorithms, not just the HBD

scheme. Third but most importantly, the SpMV algorithms are

“robust” against small differences in the separator’s quality:

on all algorithms, there is no significant performance loss

when switching from METIS to a slightly worse, but faster to

compute, ordering produced by the local heuristic.

VI. CONCLUSIONS

This paper described a sparse matrix representation which in

conjunction with precision reduction, forms the basis for high-

performance SpMV kernels. We evaluated their performance

both as stand-alone kernels and on CMG, showing substantial

speedsup on a diverse collection of matrices.
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