
15-123

Systems Skills in C and Unix

Some background Stuff

Programs are Translated into binaries

Hello world
program

preprocessd Hello
world

Assembly hello
world

Relocatable Object
Hello world

Executable Hello
World

hello.c hello.i

hello.shello.o

hello

Programs are Translated into byte code

Hello world
program

Hello World Byte
code

Virtual
Machineoutput

hello.* hello.byte

Demo code

Byte code versus assembly code

Register based vs stack based

Instructions are directly
executed on registers

Instructions are “safely”
executed on virtual machine

Functions as data
� Virtual machines (VM) treat programs as data

� Program is a file of bytes

� VM has a stack based model of implementation

� Each function call uses its own stack to execute the
instructions

� The machine hardware only executes the VM
instructions

� No program instructions get executed by hardware

Some other details

All programs get executed

I/O Bus

I/O
Bridge

PC
IR

ALU

Cost of computing is important
� Moving data is expensive

� Large storage devices are slower than smaller storage
devices (hard drive vs RAM)

� Capacity: RAM/hard drive = 1/100

� Access : RAM/Hard drive = 1/10,000,000

� RAM versus Registers

� Capacity: Register/RAM = 32 bits/2 GB

� Access: Register :RAM access = 100:1

Speeding up with Cache

can help

� Cache memories

� Smaller faster storage devices

� Stores data that the processor is likely to need in the
near future

� Cache memory is directly connected through bus
interface

� Goal is to make cache memory access as fast as register
access

Understanding Instruction Set

Architecture

Instruction set architecture
� provides a perspective of the processor from assembly

language or machine language programmer’s point of
view.

PC
IR

ALU

Instruction set architecture
� ISA describes the instructions that processor

understands, including register set and how the
memory is organized.

� A real world processor ISA would include few
additional items such as data types; interrupt
handlers, exception handling etc. ISA is part of the
computer architecture specific to a particular
hardware.

Registers
� Registers are special purpose memory locations
� Most assembly instructions directly operate on registers

� loading data into registers from memory
� performing operations on data and storing data back in

memory

� The registers are named like
� eax, ebx, ecx
� ebp and esp - for manipulating the base pointer and stack

pointer

� The size of a register (say 32-bit) and number of registers
(say 8) depends on particular computer architecture.

� A typical register instruction in assembly
� movl $10, %eax

A Hypothetical Machine

Question: How many addressable units are in our memory
model? Answer based on PC

Basic Instructions

� The basic instructions for a computer are
� branch instructions

� jmp

� I/O instructions
� Load and save

� Arithmetic instructions
� add, mul

� Device instructions
� Read, write

� comparison instructions
� If (x > y)

Instructions

Sample program

From assembly to object code
1. 0x61000001

2. 0x62000030

3. 0xA3000000

4. 0x94320000

5. 0xA3000000

6. 0x95320000

7. 0xE4500000

8. 0xF0000000

9. 0x20000034

10. 0x83420000

11. 0xB300000F

12. 0x84410000

13. 0x10000018

14. 0x00000000

instructions gets loaded

into registers

#listing 1
.global main
main:
movl $20, %eax
ret

00000000 00000000 00000000
00010100

Register eax

C code here

00000000000000000000000

0000000000000110001110

00000000000000000000000000

gcc –S sourcecode

Loading
Into
memory

Exercises

class activity

Exercise 1
� Write a program to add the numbers 2 and 5 and output to port #15

(output port). Then convert to machine code.

Exercise 2� Write a program that reads a single digit integer from keyboard and
output.

Exercise 3� Write a program that reads a single digit integer from keyboard and
output the number if the number is greater or equal to 5.

Exercise 4� Write a program that reads a single digit integer from keyboard and
output all numbers between 1 and number

Simulation

How to think about a simulator
1. 0x61000001

2. 0x62000030

3. 0xA3000000

4. 0x94320000

5. 0xA3000000

6. 0x95320000

7. 0xE4500000

8. 0xF0000000

9. 0x20000034

10. 0x83420000

11. 0xB300000F

12. 0x84410000

13. 0x10000018

14. 0x00000000

PC
IR

ALU

Instructions in
RAM

Simulator hardware

Components

� An array of eight 32-bit registers

� A 32-bit register for IR and a 24-bit register for PC

� An array of bytes to simulate RAM. Each instruction
takes 32-bytes

� How much memory is needed based on PC?

Object Code Parser
� Load the instruction to IR

� 0x61000001

� Parse the instruction using bit masks to extract the
meaning

0x61000001

� Execute the instruction

� Load 1 to register A

LOADI A 1

Code and Data

Code and Data are inseparable
� A 160 character C program that computes the first 800

digits of pi.

int a=10000,b,c=2800,d,e,f[2801],g;main(){for(;b-
c;)f[b++]=a/5; for(;d=0,g=c*2;c-
14,printf("%.4d",e+d/a),e=d%a)for(b=c;d+=f[b]*a, f[b]=d%-
-g,d/=g--,--b;d*=b);}

Loading code/data from memory
1. 0x61000001
2. 0x62000030
3. 0xA3000000
4. 0x94320000
5. 0xA3000000
6. 0x95320000
7. 0xE4500000
8. 0xF0000000
9. 0x20000034
10. 0x83420000
11. 0xB300000F
12. 0x84410000
13. 0x10000018
14. 0x00000000

PC
IR

ALU

14. 0x00000001

15. 0x00010010

16. 0x00010011

17. 0x01001001

18. 0x10010010

LOAD Register hex-address

Storing data in memory
1. 0x61000001
2. 0x62000030
3. 0xA3000000
4. 0x94320000
5. 0xA3000000
6. 0x95320000
7. 0xE4500000
8. 0xF0000000
9. 0x20000034
10. 0x83420000
11. 0xB300000F
12. 0x84410000
13. 0x10000018
14. 0x00000000

PC
IR

ALU

14. 0x00000001

15. 0x00010010

16. 0x00010011

17. 0x01001001

18. 0x10010010

STORE Register hex-address

Code and Data
1. 0x61000001
2. 0x62000030
3. 0xA3000000
4. 0x94320000
5. 0xA3000000
6. 0x95320000
7. 0xE4500000
8. 0xF0000000
9. 0x20000034
10. 0x83420000
11. 0xB300000F
12. 0x84410000
13. 0x10000018
14. 0x00000000

PC
IR

ALU

14. 0x00000001

15. 0x00010010

16. 0x00010011

17. 0x01001001

18. 0x10010010

RAM

Coding Examples

