Systems Skills in C and Unix

cess Manage

A process

e isan instance of a program that is currently running.

e Example: an executing C program
A uni processor or a single core system

e A system with a single processor

* A single processor can typically executes multiple processes
A call to a program spawns a process.

e If a mail program is called by n users then n processes or instances are created and
executed by the unix system.

Many operating systems including windows and unix executes many
processes at the same time.
e Shared systems

rocess Status

* When a program is called, a process is created and a
rocess ID is issued. The process ID is given by the
unction getpid() defined in <unistd.h>.

The prototype for pid() is given by
#include <unistd.h>
pid_t getpid(void);

* ps command lists all the current processes
> ps

PID TTY TIME CMD
10150 Ppts/16 00:00:00 csh
31462 pts/16 00:00:00 PS

P

ps command options

> Pps -a
>ps -1
> ps -al

Information provided by each process may include the

following.
PID The process ID in integer form
PPID The parent process ID in integer form
STAT The state of the process
TIME CPU time used by the process (in seconds)
TT Control terminal of the process

COMMAND The user command that started the process

P———

More on processes

Sample Code
e printf("The current process %d \n",getpid());
o printf("The parent process is %d \n",getppid());
e printf("The owner of this process has uid %d \n",getuid());
e sleep(1);
* Background Processes
e run a C program in the background

« >./a.out &

e Ideal for long jobs

“Concurrency

» Two events that overlap in time are called “concurrent”

* Single-core machines
e Concurrent processes are interleaved
« A way to organize jobs to increase performance

e Concurrency can be enabled
» when accessing slow [/O devices

e Concurrency Can also be controlled from programmer
level

« Mix I/O and other operations
* In Multi-core machines, concurrency is
e True parallelism @ OS level

~Application level concurrency

* Exploited by “concurrent programs”

* Three basic approaches to building concurrent applications
e Multiple Processes

« Separate virtual address spaces
« Communicate via [PC
e [/O multiplexing
« Application scheduling logical flows in a context of a single process

e Threads

« Logical flows that runs in the context of a single process called
parent

 Separate stack space for each thread

w to build concurrency in
your program

* Using system calls
e fork(), exec(), waitpid(), exit()
* Concurrency examples

e Serving clients in a network

« Accept requests by client

 Create threads to handle each client
e A broadcasting application

 Data distributed to all nodes in a network by using multiple
threads

Creating a child thread

* fork()

o #include <unistd.h>

pid_t fork(void);
» fork creates a new child process exactly identical to the parent
» That is, Child gets an exact copy of the parent
- inherits state
« Child gets a unique process ID

o Child also Inherits parents file descriptors and refer to the
same open files

Forking new Processes

e Calling fork()
e creates a child process which is exactly identical to the parent process

e The value zero gets returned to the child and PID gets returned to the
parent.

* Anexample
if (fork() == 0) {
printf(“This is a message from the child\n”);

}

else { printf(“This is a message from the parent\n”);}

* If the fork process is failed, no child process is created and fork returns
-1.
 int PID = fork();
o if (PID == -1) printf(“the process creation failed\n”);

Sample Code

int A[]={1:2’3’4’5)6};
int sum=o, pdt=1, PID, i;
if ((PID=fork())==0){
for (i=0;i<6;i++) sum += A[i];
printf("This is child process computed sum %d \n", sum);
}
if (PID <o) {
fprintf(stderr,"problem creating a process \n");
}
if (PID >o0) {
for (i=0;i<6;i++) pdt *= A[i];
printf("The parent process completed the product %d \n", pdt);

}

* What is the output?

| —

"Being Bad
fork bomk

gerver-CIient Architectures

re about processes

» Parent and child processes share state information
e Gets a copy of the state variables

* Parent and children have their own address spaces

e One process cannot overwrite another

* Drawbacks
e Hard to share state information

« However waitpid and signals can send small messages to
processes running on the same host

e Have to use explicit IPC

« to share information on different hosts

er Process Managemen
Commands

* exec() [many variations of this]
* See next slide
o wait()
e #include <sys/wait.h>
pid_t wait(int *stat_loc);
« Suspends the execution of the calling thread until a child has returned
e pid_t waitpid(pid_t pid, int *stat_loc, int options);
« If pid>o, this requests the status of a child process
« Options defined in <sys/wait.h>
o exit()
e #include <stdlib.h>
void exit(int status);
o Status can be EXIT_SUCCESS, EXIT_FAILURE or any other value
e 8 Least significant bits available to a calling process
e Value can be retrieved by wait

Executing another process

* execl --- takes the path name of a binary executable as its first
argument, the rest of the arguments are the command line
arguments ending with a NULL.

e Example: execl("./a.out", NULL)

* execv - takes the path name of a binary executable as its first
argument, and an array of arguments as its second argument.

« ¢« n

e Example: static char* args[] = {“* "cat.txt", "test1.txt", NULL};
e execv("/bin/cp", args);

* execlp --- same as execl except that we don’t have to give the full
path name of the command.

e execlp("ls", NULL)

Writing a (fake) Shell ”

int PID; char cmd[256];
while (1) {
printf("cmd: "); scanf(“%s”, cmd);
if (strcmp(cmd,"e")==0)
exit(o);
if ((PID=fork()) > o)
wait(NULL);
else if (PID == o) /* child process */
{ execlp (cmd,cmd,NULL);
fprintf (stderr, "Cannot execute %s\n", cmd);
exit(1);
}
else if (PID == -1)
{ fprintf (stderr, "Cannot create a new process\n");
exit (2);

}

xamples

wait, waitpid - wait for a child process to stop or terminate
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

It returns the PID of the child and the exit status gets placed in status.
main() {
int child_status, pid, pidwait;
if ((pid = fork()) == o) {
printf(“This is the child!\n”);
}
else {
pidwait = wait(&child_status);
printf(“child %d has terminated\n”, pidwait);
}
exit();

}

P

Coding Examples

