
4/11/2011

1

15-123

Systems Skills in C and Unix

Why Systems Programming?
� To access computers resources at a lower level using

system calls

� Examples

� Managing files, processes, IPC etc..

� Writing our own cleanup program

� Managing Files

� In Unix, any I/O component is a file

� stdin, stdout, device files, sockets

� All files created, open, read the same way

4/11/2011

2

What is a system call?
� A direct request to the operating system to do

something on behalf of the program

� Typically programs are executed in user mode

� System call allows a switch from user mode to
kernel mode

Code
Code

System call
code

User mode

Kernel mode

Unix Kernel
� The core of the unix operating system

� Managing

� Processes

� Files

� Networking etc..

� More details from OS courses

4/11/2011

3

in Kernel Mode
� All programs run in

� user mode
� can be replaced by another process at any time

� kernel mode
� cannot be arbitrarily replaced by another process.

� A process in kernel mode
� can be suspended by an interrupt or exception.

� A C system call
� A software instruction that generates an OS interrupt or

operating system trap
� Assembly instruction Xo80

Using System Calls
� To manage

� the file system

� Open, creat, close, read

� control processes

� folk, exec

� provide communication between multiple processes.

� pipes

4/11/2011

4

File Systems

Create System Call

#include <fcntl.h>

int creat(char* filename, mode_t mode)

� The mode

� is an octal number

� Example: 0444 indicates that r access for USER, GROUP and
ALL for the file.

� If the file exists, the creat is ignored and prior content
and rights are maintained.

4/11/2011

5

Opening Files
#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(char* filename, int flags, mode_t mode);
� Flags: O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_TRUNC,

O_APPEND
� O_ stands for open

� Mode: Specifies permission bits of the file
� S_IRUSR, S_IWUSR, S_IXUSR – owner permission

� S_IRGRP, S_IWGRP, S_IXGRP – group permission

� S_IROTH, S_IWOTH, S_IXOTH – other permission

More on open
� Each open call generates a file descriptor (by

kernel)

� Kernel keeps track of all open files

� Up to 16 in general

� Each unix shell starts with 3 standard files

� stdin (descriptor 0)

� stdout (descriptor 1)

� stderr (descriptor 2)

� All other file descriptors are assigned sequentially

4/11/2011

6

Reading/Writing Files
� Low level read and write

� #include <unistd.h>

� ssize_t read(int fd, void *buf, size_t n);

� Returns num bytes read or -1

� ssize_t write(int fd, const void *buf, size_t n);

� Returns num bytes written or -1

lseek function
� #include <sys/types.h>

� #include <unistd.h>

� lseek moves the cursor to a desired position

long lseek(int fd, int offset, int origin)
origin position

0 beginning of the file

1 Current position

2 End of the file

End of the file

� Examples

4/11/2011

7

Closing a file
� include <unistd.h>

� int close(int fd);

� Return 0 (success)

� Return -1 (error)

Example
int main(void){

char c;

while (read(0,&c,1) != 0)

write(1, &c, 1);

exit(0);

}

� What does it do?

4/11/2011

8

Example
int foo(char s[], int size){

char* tmp = s;

while (--size>0 && read(0,tmp,1)!=0 && *tmp++ !=
'\n');

*tmp = '\0';

return (tmp-s);

}

� What does it do?

What about size_t and ssize_t
� size_t – unsigned int

� ssize_t - signed int

� How does this affect the range of values in each type?

� with 32-bit int?

4/11/2011

9

What can go wrong with read and

write?
� processing fewer bytes than requested

� reaching EOF

� Reading text lines from stdin

� Reading and writing network sockets

� Network delays

� Buffering constraints

Reading file metadata
� How can we find information about a file

� #include <unistd.h>

� #include <sys/stat.h>

� int stat(const char* filename, struct stat *buf);

� int fstat(int fd, struct stat *buf);

4/11/2011

10

What is struct stat?

Accessing File Status

stat(char* file, struct stat *buf);
fstat(int fd, struct stat *buf);
struct stat buf; // defines a struct stat to hold file
information

stat(“filename”, &buf) ; // now the file information is
placed in the buf

st_atime --- Last access time
st_mtime --- last modify time
st_ctime --- Last status change time
st_size --- total size of file
st_uid – user ID of owner
st_mode – file status (directory or not)

4/11/2011

11

Example
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
struct stat statbuf;

char dirpath[256];
getcwd(dirpath,256);
DIR *dir = opendir(dirpath);
struct dirent *dp;

for (dp=readdir(dir); dp != NULL ; dp=readdir(dir)){
stat(dp->d_name, &statbuf);
printf("the file name is %s \n", dp->d_name);
printf("dir = %d\n", S_ISDIR(statbuf.st_mode));
printf("file size is %ld in bytes \n", statbuf.st_size);
printf("last modified time is %ld in seconds \n", statbuf.st_mtime);
printf("last access time is %ld in seconds \n", statbuf.st_atime);
printf("The device containing the file is %d\n", statbuf.st_dev);
printf("File serial number is %d\n\n", statbuf.st_ino);

}

How to determine a file type
� S_ISREG

� A regular file?

� S_ISDIR

� Is a directory?

� printf("dir = %d\n", S_ISDIR(statbuf.st_mode));

� S_ISSOCK

� A network socket

4/11/2011

12

Working Directory
#include <unistd.h>

char* getcwd(char * dirname, int);

Accessing Directories
struct dirent *readdir(DIR* dp)

returns a pointer to the next entry in the directory. A NULL pointer is
returned when the end of the directory is reached. The struct direct has
the following format.

struct dirent {
u-long d_ino; /* i-node number for the dir
entry */

u_short d_reclen; /* length of this record */
u_short d_namelen ; /* length of the string in
d_name */

char d_name[MAXNAMLEN+1] ; /* directory name */
};

4/11/2011

13

Creating and removing Directories
� int mkdir(char* name, int mode);

� int rmdir(char* name);

� returns 0 or -1 for success or failure.

� mkdir(“newfiles”, 0400);

� rmdir(“newfiles”);

Example
#include <string.h>
#include <sys/types.h>
#include <sys/dir.h>

int search (char* file, char* dir){
DIR *dirptr=opendir(dir);
struct dirent *entry = readdir(dirptr);
while (entry != NULL) {

if (strlen(entry->d_name) == strlen(file) && (strcmp(entry->d_name,
file) == 0)

return 0; /* return success */
entry = readdir(dirptr);

}
return 1; /* return failure */

}

4/11/2011

14

File Management summary
� creat(), open(), close()

� managing I/O channels
� read(), write()

� handling input and output operations
� lseek()

� for random access of files
� link(FILE1, FILE2), unlink(FILE)

� aliasing and removing files
� stat()

� getting file status
� access(), chmod(), chown()

� for access control
� int access(const char *pathname, int mode);

� chdir()
� for changing working directory

� mkdir()
� for creating a directory

Dealing with system call

interfaces
� System calls interface often change

� place system calls in subroutines so subroutines
� Error in System Calls

� returns -1
� store the error number in a variable called “errno” given in a header file called

/usr/include/errno.h.
� Using perror

� When a system call returns an error, the function perror can be used to print a
diagnostic message. If we call perror(), then it displays the argument string, a
colon, and then the error message, as directed by "errno", followed by a newline.

if (unlink("text.txt")==-1){
perror("");

}

4/11/2011

15

Process Control

Process Control
� exec(), fork(), wait(), exit()

� for process control

� getuid()

� for process ownership

� getpid()

� for process ID

� signal() , kill(), alarm()

� for process control

4/11/2011

16

Other system functions
� mmap(), shmget(), mprotect(), mlock()

� manipulate low level memory attributes

� time(), gettimer(), settimer(),settimeofday(),
alarm()

� time management functions

� pipe()

� for creating inter-process communication

Coding Examples

