
15-123

Systems Skills in C and Unix

The Shell
� A command line interpreter that provides the interface

to Unix OS.

What Shell are we on?
� echo $SHELL

� Most unix systems have

� Bourne shell (sh)

� No command history

� Korn shell (ksh)

� Shell functions

� C shell (csh)

� History, no shell functions
� More details at unix.com

What’s Shell good for?

� Starting and stopping processes

� Controlling the terminal

� Interacting with unix system

� Solving complex problems with simple scripts

� Life saver for system administrators

� What is a “shell script” ?

� A collection of shell commands supported by control
statements

� Shell scripts are interpreted and instructions executed

Quick review of basics

A Shell Script
#!/bin/sh

-- above line should always be the first line in your script

A simple script

who am I

Date

� Execute with: sh first.sh

Another shell script

Command Line Arguments
� $# - represents the total number of arguments

(much like argv) – except command

� • $0 - represents the name of the script, as invoked

� • $1, $2, $3, .., $8, $9 - The first 9 command line
arguments

� Use “shift” command to handle more than 9 args

� • $* - all command line arguments OR

� • $@ - all command line arguments

What are the three kinds of

quotes in Shell expressions?

Capturing output from a shell

operation

A major bug: Did not catch if the program seg faulted

Control Statements – Loops and
conditionals

Useful shell commands
� Shell already has a collection of rich commands

� Some Useful commands

� uptime, cut, date, cat, finger, hexdump, man, md5sum,
quota,

� mkdir, rmdir, rm, mv, du, df, find, cp, chmod, cd

� uname, zip, unzip, gzip, tar

� tr, sed, sort, uniq, ascii

� Type “man command” to read about shell commands

What do these shell commands

do?
� cat dups.txt | sort | uniq

� cat somefile.txt | sed 's/|/,/g' > outfile

� cat somefile.txt | sed 's#|#,#g' > outfile

� cat somefile.txt | sed '1,10 s/|/,/g' > outfile

� cat somefile.txt | sed '1,$ s/|/,/g' > outfile

� cat somefile.txt | sed '/^[0-9]+/ s/|/,/g' > outfile

� cat file | cut -d: -f3,5

� cat file.txt | tr "abcd" "ABCD" > outfile.txt

More of those
� cat file.txt | tr "a-z" "A-Z" > outfile.txt

� cat file.txt | tr -d "\015" > outfile.txt

� cat somefile.txt | tr "\015" "\012" > somefile.txt

I/O
� File descriptors

� Stdin(0), stdout(1), stderror(2)

� Input/output from/to stdin/stdout

� read data

� echo $data

� redirecting

� rm filename 1>&2

Unix tools in shell scripts
� Shell scripts can include utilities such as

� grep

� Pattern matching

� sed

� Stream editor

� awk

� Pattern scanning and processing

� Read more in notes and man pages

Interprocess communication

Inter Process Communication (IPC)
� Communication between processes

� Using Pipes

� Pipes is the mechanism for IPC

� ls | sort | echo

� 4 processes in play

� Each call spans a new process

� Using folk

� More later about folk

Editing in Place
� cat somefile.txt | tr -d "\015" "\012" | fold >

somefile.txt

� What does it do?

� What are some of the problems?

� Problems are caused by the way pipes work

How does pipes work

� A finite buffer to allow communication between
processes

� Typically size 8K

� If input file is less than the buffer

� We may be ok

� What if input file is more than the buffer

� Redirecting output to the same file is a bad idea

How to deal with this?
� Use a temp file

� cat file | tr -d "\015" "\012" | fold > file.tmp

� mv file.tmp file

� Better process

� cat file| tr -d "\015" "\012" | fold > "/usr/tmp/file.$$"

� mv "/usr/tmp/file.$$" “file“

� /usr/tmp is cleared upon reboot

Pipes, Loops and Sub shells

#!/bin/sh

FILE=$1

cat $FILE |

while read value

do

echo ${value}

done

� while loop is executed in a sub shell

What is the problem?
#!/bin/sh
FILE=${1}
max=0
cat ${FILE} |

while read value
do

if [${value} -gt ${max}];
then

max=${value}
fi

done
echo ${max}

The fix
#!/bin/sh
FILE=${1}
max=0
values=`cat ${FILE}`
for value in ${values}
do if [${value} -gt ${max}];

then
max=${value}

fi
done

echo ${max}

Arrays in bash
array[2]=23
array[3]=45
array[1]=4

To dereference an array variable, we can use, for example

echo ${array[1]}

Array elements need not be consecutive and some members of the array
can

be left uninitialized. Here is an example of printing an array in bash.
Note the

C style loop. Also note the spaces between tokens.

for ((i=1 ; i<=3 ; i++))
do

echo ${array[$i]}
done

Coding Examples

