
15-123

Systems Skills in C and Unix

The Shell
� A command line interpreter that provides the interface

to Unix OS.

What Shell are we on?
� echo $SHELL

� Most unix systems have

� Bourne shell (sh)

� No command history

� Korn shell (ksh)

� Shell functions

� C shell (csh)

� History, no shell functions
� More details at unix.com

A Shell Script
#!/bin/sh

-- above line should always be the first line in your script

A simple script

who am I

Date

� Execute with: sh first.sh

Things to do with shell scripts
� Remove all empty folders

� Remove all duplicate lines from a file

� Send email if the assignment is not submitted

� Check output of a submitted program against sample
output

� Given a roster file, extract ID’s and create folders for
each person

� Rename a folder that contains .txt files to a folder that
contains all .htm files

Variables in shell
� System variables

� $SHELL

� $LOGNAME

� $PWD

� User defined variables

� name=guna

� echo “$name”

echo
� echo [options] [string, variables...]

� Options
� -n Do not output the trailing new line.

� -e enable interpretation

� escaped special characters
\a alert (bell)
\b backspace
\c suppress trailing new line
\n new line
\r carriage return
\t horizontal tab
\\ backslash

Shell Variables
� echo $PATH – an environment variable

� Environment variables can be changed

� PATH=$PATH:/usr/local/apache/bin:.

� Examples

� dir=pwd

� echo $dir

� subdir=“lab1”

� abspath=$dir/$subdir

Command Line Arguments
� $# - represents the total number of arguments

(much like argv) – except command

� • $0 - represents the name of the script, as invoked

� • $1, $2, $3, .., $8, $9 - The first 9 command line
arguments

� • $* - all command line arguments OR

� • $@ - all command line arguments

Using Quotes
� Shell scripting has three different styles of quoting -- each with a

different meaning:
� unquoted strings are normally interpreted

� "quoted strings are basically literals -- but $variables are evaluated“

� 'quoted strings are absolutely literally interpreted‘

� `commands in quotes like this are executed, their output is then inserted as if it were
assigned to a variable and then that variable was evaluated`

Examples
� day=`date | cut -d" " -f1`

� printf "Today is %s.\n" $day

Expressions
� Evaluating Expr

� sum=`expr $1 + $2`

� printf "%s + %s = %s\n" $1 $2 $sum

� Special Variables
� $? - the exit status of the last program to exit

� $$ - The shell's pid

� Examples
� test "$LOGNAME" = guna

� echo $?

expr
� Syntax: expr $var1 operator $var2

� Operators

+ , - , / , % , *

Conditionals
� test -f somefile.txt

or

� [-f somefile.txt]

� If statement
if ["$LOGNAME"="guna"]

then

printf "%s is logged in" $LOGNAME

else

printf "Intruder! Intruder!"

fi

The for loop
for var in "$@"

do

printf "%s\n" $var

done

for ((i = 1 ; i < 20 ; i++))

do

done

While loop
ls | sort |

while read file

do

echo $file

done

I/O

� File descriptors

� Stdin(0), stdout(1), stderror(2)

� Input from stdin

� read data

� echo $data

� redirecting

� rm filename 1>&2

Functions
whologgedin()

{

echo “hello $LOGNAME”

}

Calling:

> whologgedin

grep/sed/tr/s
� grep pattern file

� sed s/regex1/regex2/

� sed tr/[a-z]/[A-Z]/

Calling shell commands from perl
� #! /usr/local/perl

� `mv $file1 $file2`;

Things to do with shell scripts
� Remove all empty folders

� Remove all duplicate lines from a file

� Send email if the assignment is not submitted

� Check output of a submitted program against sample
output

� Given a roster file, extract ID’s and create folders for
each person

� Rename a folder that contains .txt files to a folder that
contains all .htm files

Coding Examples

