
15-123

Systems Skills in C and Unix

Topics
� Formal Languages

� Finite State Machines

� Regular Expressions

� RegEx Grammer

� Alternation

� Grouping

� Quantification

� Pattern search utilities in unix

� grep, awk

� Perl Primer

� examples

Formal Languages
� Formal language consists of

� An alphabet

� Formal grammar

� Formal grammar defines

� Strings that belong to language

� Formal languages with formal semantics generates
rules for semantic specifications of programming
languages

Automaton
� An automaton (or automata in plural) is a machine

that can recognize valid strings generated by a formal
language.

� A finite automata is a mathematical model of a
finite state machine (FSM), an abstract model under
which all modern computers are built.

Automaton
� A FSM is a machine that consists of a set of finite states

and a transition table.

� The FSM can be in any one of the states and can transit
from one state to another based on a series of rules
given by a transition function.

Example

What does this machine represents? Describe the kind of
strings it will accept.

Exercise
� Draw a FSM that accepts any string with even number

of A’s. Assume the alphabet is {A,B}

Build a FSM
� Stream: “Ilovecatsandmorecatsandbigcats ”

� Pattern: “cat”

Regular Expressions

Case for regular expressions

� Many web applications require pattern matching

� look for <a href> tag for links

� Token search

� A regular expression

� A pattern that defines a class of strings

� Special syntax used to represent the class

� Eg; *.c - any pattern that ends with .c

Regex versus FSM
� A regular expressions and FSM’s are equivalent

concepts.

� Regular expression is a pattern that can be recognized
by a FSM.

� Regex is an example of how good theory leads to good
programs

Regular Expression
� regex defines a class of patterns

� Patterns that ends with a “*”

� Regex utilities in unix

� grep, awk, sed

� Applications

� Pattern matching (DNA)

� Web searches

Regex Engine
� A software that can process a string to find regex

matches.

� Regex software are part of a larger piece of software

� grep, awk, sed, php, python, perl, java etc..

� We can write our own regex engine that recognizes all
“caa” in a strings

� See democode folder

� Different regex engines may not be compatible with
each other

� Perl 5 is a popular one to learn

Regex machines

� Perl can do a “decent” job with simple regex’s

� But it can fail in cases where expressions can be of the
form ____________

� One of the best regex machines was written in C by
Ken Thompson in the 70’s

� 400 lines of C code

� Superior to perl, python and other implementations
when working with real world applications

Unix grep utility

The grep command

Simple grep examples
� grep “<a href” guna.html > output.txt

� ls | grep “guna”

� grep ‘regex’ filename

� man grep

� For more info

regex grammer

Regular Expression Grammar
� Regex grammar defines a set of rules for finding

patterns. Grammar categories

� Alternation

� Grouping

� quantification

Regular Expression Grammar
� Alternation

� The vertical bar is used to describe alternating choices
among two or more choices.

� the notation a | b | c indicates that we can choose a or b
or c as part of the string.

� Another example is that “(c|s)at” describes the
expressions “cat” or “sat”. n

Regular Expression Grammar
Grouping

Parenthesis can be used to describe the scope and
precedence of operators.

In the example above (c|s) indicates that we can either
begin with c or s but must immediately follow by “at”

Regular Expression Grammar
� Quantification

� Quantification is the notation used to define the
number of symbols that could appear in the string.

� The most common quantifiers are
� ?, * and +

� The ? mark indicates that there is zero or one of the
previous expression.

� The “*” indicates that zero or more of the previous
expression can be accepted.

� The “+” indicates that one or more of the previous
expression can be accepted.

Examples of *, ? , +

Other facts
� . matches a single character

� .* matches any string

� [a-zA-Z]* matches any string of alphabetic characters

� [ag].* matches any string that starts with a or g

� [a-d].* matches any string that starts with a,b,c or d

� ^(ab) matches any string that begins with ab. In
general, to match all lines that begins with any string
use ^string

� (ab)$ matches any string that ends with ab

Finding non-matches

� To exclude a pattern

� [^class]

� Eg: [^0-9]

� grep ‘<h\([1-4]\)>.*h\([1-3]\)>’ filename

� What patterns match?

� grep ‘h\([1-4]\).*h\1’ filename

� Back-reference

Group Matches

Character Classes
� \d digit [0-9]

� \D non-digit [^0-9]

� \w word character [0-9a-z_A-Z]

� \W non-word character [^0-9a-z_A-Z]

� \s a whitespace character [\t\n\r\f]

� \S a non-whitespace character [^ \t\n\r\f]

More regex notation
� {n,m} at least n but not more than m times

� {n,} – match at least n times

� {n} – match exactly n times

More examples of regex
� Find all files that begins with “guna”

� Find all files that does not begins with “guna”

� Find all files that ends with guna

� Find all directories in current folder. Write them to an
external file.

Exercise
� An email address must begin with an alpha character and

can have any combination of alpha characters and
characters from {0..9, %, _, +, -} followed by @ and a
domain name {alpha-numeric} followed by {.} and any
token from the set {edu, com, us, org, net}. Write a regex to
describe this.

Summarized Facts about regex
� Two regular expressions may be concatenated; the

resulting regular expression matches any string
formed by concatenating two substrings that
respectively match the concatenated sub expressions.

� Two regular expressions may be joined by the infix
operator | the resulting regular expression matches
any string matching either sub expression

Summarized Facts about regex
� Repetition takes precedence over concatenation,

which in turn takes precedence over alternation. A
whole sub expression may be enclosed in parentheses
to override these precedence rules

� The backreference \n, where n is a single digit,
matches the substring previously matched by the nth
parenthesized sub expression of the regular
expression.

� In basic regular expressions the metacharacters ?, +, {,
|, (, and) lose their special meaning; instead use the
backslashed versions \?, \+, \{, \|, \(, and \).

Text Processing Languages
� awk

� Text processing language

� awk ‘/pattern/’ somefile

� awk '{if ($3 < 1980) print $3, " ",$5,$6,$7,$8}' somefile

� sed
� A stream editor

� sed s/moon/sun/ < moon.txt >sun.txt

� Perl
� A powerful scripting language

� We will discuss this next

� We will discuss this very briefly for the fun of it. Sed and Awk
will not be tested. We will extensively study perl though

Basics of sed

sed basics
� sed is a stream editor

� > sed ‘s/guna/foo/’ filename

� Replaces guna by foo in the file

� first occurrence on each line

� output sent to stdout

� > sed ‘s/guna/foo/g’ filename

� Globally replaces guna by foo in the file

� If you have special characters {.*[]^$\ }

� Precede with \

� eg: sed ‘s/guna\[me\.him\]/foobar/g’ filename

sed basics

� Replacing more than one token

� sed -e ‘s/guna/foo/g’ -e ‘s/color/colour/g’ filename

� What if / is part of the string to replace?

� Replace all afs/andrew with afs/cs

� Solution: any character immediately following s is the
delimiter

� sed ‘s#afs/andrew#afs/cs’ filename

Basics of awk

Basics of awk
� Uses

� Use information from text files to create reports

� Translating files from one format to another

� Adding functionality to “vi”

� Mathematical operations on numeric files

� awk also has a basic interpreted programming language

� Basic commands
� General form:

� awk ‘<search pattern> {<program actions>} ‘

� awk ‘/guna/ file -- prints all lines with guna

� awk ‘/guna/’ {print $1,$2,$3} ‘ file

� awk -F',' '{if ($5=="MCS") print $2}' roster.txt

exercises
� Download an index.html file from your favorite

website

� use wget

� Change all URL’s for example, www.cnn.com to
www.foxnews.com

� use sed

Coding Examples

Scripting Languages

� Many routine programming tasks require custom designed
solutions, environments and approaches
� Extracting data from a roster file

� Scripting languages are ideal for tasks that do not require a
“high level” compiled language solution
� Some argue that this is the real way to learn programming
� No need to worry about static typing

� Scripts are widely used as backend processing languages for
web based applications
� Authenticate passwords
� Extract data from a database
� Create dynamic web pages

Popular Scripting Languages

� JavaScript

� Client side processing based on a built in browser interpreter

� PHP

� Server side processing

� Python

� Object oriented, interpreted, data structures, dynamic typing,
dynamic binding, rapid application development, binding
other programming components

� Perl

� Also you can call it an “interpreted” language (more later)

Perl
� An interpreted scripting language

� Practical extraction and Report Language

� Developed as a tool for easy text manipulation and
report generation

� Why Perl

� Easy scripting with strings and regex

� Files and Processes

� Standard on Unix

� Free download for other platforms

What’s good for Perl?
� Scripting common tasks

� Tasks that are too heavy for the shell

� Too complicated (or short lived) for C

First Perl Program

#! usr/bin/perl –w

print (“hello world \n”);

� How does this work?

� Load the interpreter and Execute the program

� perl hello.pl

An interpreted language
� Program instructions do not get converted to machine

instructions.

� Instead program instructions are executed by an
“interpreter” or program translator

� Some languages can have compiled and interpreted
versions

� LISP, BASIC, Python

� Other interpreters

� Java interpreter (byte code) and .net CIL

� Generates just in time machine code

Perl Data Types
� Naming Variables

� Names consists of numbers, letters and underscores

� Names cannot start with a number

� Primitives

� Scalars

� Numeric : 10, 450.56

� Strings

� ‘hello there\n’

� “hello there\n”

Perl Data Types
� arrays of scalars

� ordered lists of scalars indexed by number, starting with
0 or with negative subscripts counting from the end.

� associative arrays of scalars, a.k.a``hashes''.

� unordered collections of scalar values indexed by their
associated string key.

Variables
� $a = 1; $b = 2;

� All C type operations can be applied

� $c = $a + $b; ++$c; $a +=1;

� $a ** $b - something new?

� For strings

� $s1 . $s2 - concatenation

� $s1 x $s2 - duplication

� $a = $b

� Makes a copy of $b and assigns to $a

Useful operations
� substr($s, start, length)

� substring of $s beginning from start position of length

• index string, substring, position

look for first index of the substring in string starting from
position

• index string, substring

look for first index of the substring in string starting from
the beginning

• rindex string, substring

position of substring in string starting from the end of the
string

• length(string) – returns the length of the string

More operations

• $_ = string; tr/a/z/; # tr is the transliteration operator

replaces all ‘a’ characters of string with a ‘z’ character and assign to $1.

• $_ = string; tr/ab/xz/;

replaces all ‘a’ characters of string with a ‘x’ character and b with z and
assign to $1.

• $_ = string; s/foo/me/;

replaces all strings of “foo” with string “me”

• chop

this removes the last character at the end of a scalar.

• chomp

removes a newline character from the end of a string

• split splits a string and places in an array

o @array = split(/:/,$name); # splits the string $name at each : and stores
in an array

o The ASCII value of a character $a is given by ord($a)

More at: http://www.perl.com/doc/manual/html/pod/perlop.html

Arrays
� @array = (10,12,45);

� @A = (‘guna’, ‘me’, ‘cmu’, ‘pgh’);

� Length of an array

� $len = $#A + 1

� Resizing an array

� $len = desired size

repetition
A While Loop
$x = 1;
while ($x < 10){
print “x is $x\n”;
$x++;

� }

Until loop
$x = 1;
until ($x >= 10){
print “x is $x\n”;
$x++;
}

repetition
Do-while loop

$x = 1;

do{

print "x is $x\n";

$x++;

} while ($x < 10);

for statement

for ($x=1; $x < 10; $x++){

print “x is $x\n”;

}

foreach statement

foreach $x (1..9) {

print "x is $x\n";

}

Parsing a roster entry

� S10,guna,Gunawardena,Ananda,SCS,CS,3,L,4,15123 ,A ,,

Perl IO
$size = 10;

open(INFILE, “file.txt”);

$#arr = $size-1; # initialize the size of the array to 10

$i = 0;

foreach $line (<INFILE>) {

$arr[$i++] = $line;

if ($i >= $size) {

$#arr = 2*$#arr + 1; # double the size

$size = $#arr + 1;

}

}

Perl IO
� open(OUT, “>out.txt”);

� print OUT “hello there\n”;

� Better file open

� open (OUT, “>out.txt”) || die “sorry out.txt could not be
opened\n”

Perl and Regex

Perl and Regex
� Perl programs are perfect for regex matching examples

� Processing html files

� Read any html file and create a new one that contains only the
outward links

� Do the previous exercise with links that contain cnn.com only

Regex syntax summary
� ?, +, *

� () - grouping

� (exp (exp)) � \1, \2 or $1 , $2 backreference
matching

� ^startwith

� [^exclusion group]

� [a-z,A-Z] – alpha characters

Perl and regex
open(INFILE, "index.html");

foreach $line (<INFILE>) {

if ($line =~ /guna/){

print $line;

}

}

close(INFILE);

Lazy matching and backreference
open(IN, “guna.htm”);

while (<IN>){

if ($_ =~ /mailto:(.*?)"/){

print $1."\n";

}

}

Global Matching
� How to find all matches on the same line

open(IN, “guna.htm”);

while (<IN>){

if ($_ =~ /mailto:(.*?)"/g){

print $1."\n";

}

}

Global Matching and Replacing
The statement

$str =~ s/oo/u/;

would convert "Cookbook" into "Cukbook", while the
statement

$str =~ s/oo/u/g;

would convert "Cookbook" into "Cukbuk".

CGI Scripts and Perl
� CGI is an interface for connecting application software

with web servers

� CGI scripts can be written in Perl and resides in CGI-
bin

� Example: Passwd authentication
while (<passwdfile>) {
($user, $passwd)= split (/:/, $_);
…………

}

LWP

Library for www in Perl

� LWP contains a collection of Perl modules

� use LWP::Simple;

� $_ = get($url);

� print $_;

� Good reference at

� http://www.perl.com/pub/a/2002/08/20/perlandlwp.html

Getopt

� The Getopt::Long module implements an extended getopt

function called GetOptions().

� Command line arguments are given as

� -n 20 or –num 20

� -n 20 -t test

� use Getopt::Long;

� $images_to_get = 20;

� $directory = ".";

� GetOptions("n=i" => \$images_to_get, "t=s" => \$directory);

References: http://perldoc.perl.org/Getopt/Long.html

