15-123
Systems Skills in C and Unix

P ——

* Formal Languages
* Finite State Machines
* Regular Expressions
* Regbkx Grammer
e Alternation
e Grouping
e Quantification
* Pattern search utilities in unix
e grep, awk
* Perl Primer

e examples

- Formal Languages

* Formal language consists of
e An alphabet

e Formal grammar

* Formal grammar defines
e Strings that belong to language

* Formal languages with formal semantics generates
rules for semantic specifications of programming
languages

P

Automaton

* An automaton (or automata in plural) is a machine
that can recognize valid strings generated by a formal
language.

* A finite automata is a mathematical model of a
finite state machine (FSM), an abstract model under
which all modern computers are built.

Automaton

* A FSM is a machine that consists of a set of finite states
and a transition table.

Cl b0

* The FSM can be in any one of the states and can transit
from one state to another based on a series of rules
given by a transition function.

Example

What does this machine represents? Describe the kind of
strings it will accept.

Exercise

* Draw a FSM that accepts any string with even number
of A’s. Assume the alphabet is {A,B}

uild a FSM

¢ Stream: “Ilovecatsandmorecatsandbigcats ”
* Pattern: “cat”

P

Regular Expressions

Case for regular expressions

* Many web applications require pattern matching
e look for <a href> tag for links
e Token search

* A regular expression
e A pattern that defines a class of strings

 Special syntax used to represent the class
- Eg; *.c -any pattern that ends with .c

P

Regex versus FSM

* A regular expressions and FSM’s are equivalent
concepts.

* Regular expression is a pattern that can be recognized
by a FSM.

* Regex is an example of how good theory leads to good
programs

gular Expression

* regex defines a class of patterns

[TE%})

e Patterns that ends with a
* Regex utilities in unix

e grep, awk, sed
* Applications

e Pattern matching (DNA)

,ttaatgacctttttttttttccatgccctcgaataggcttgagcttgccaattaacgegcacg

® ggctggccgggegtataagccaaggtgtagtgaggttgeattatacatgecggettgtgatta
acgcatgccataggacggttaggctcagaacccgcaaccaatacacgtgatttictcgteccce
L2)

eX Engine
* A software that can process a string to find regex
matches.

* Regex software are part of a larger piece of software
e grep, awk, sed, php, python, perl, java etc..

* We can write our own regex engine that recognizes all
“caa” in a strings
e See democode folder

* Different regex engines may not be compatible with
each other

e Perl 5 is a popular one to learn

% gex machines

* Perl can do a “decent” job with simple regex’s

* But it can fail in cases where expressions can be of the
form

* One of the best regex machines was written in C by
Ken Thompson in the 70’s

e 400 lines of C code

e Superior to perl, python and other implementations
when working with real world applications

P

Unix grep utility

The grep command

grep
NAME

grep. egrep. farep - print lines matching a pattem

SYNOPSIS
grep [options] PATTERN [FILE...]
grep [options] [-e PATTERN | -f FILE] [FILE..]

DESCRIPTION
grep searches the named input FILEs (or standard input if no filesare
named. or the file name - is given) for lines containing a match to
the given PATTERN. By default, grep prints the matching lines.

Source: unix manual

“Simple grep examples

* grep “<a href” guna.html > output.txt

e Is | grep “guna”
* grep ‘regex’ filename
* man grep

e For more info

P

regex grammer

Regular Expression Grammar

* Regex grammar defines a set of rules for finding
patterns. Grammar categories

o Alternation
e Grouping

e quantification

Regular Expression Grammar

* Alternation

* The vertical bar is used to describe alternating choices
among two or more choices.

e the notation a | b | ¢ indicates that we can choose a or b
or c as part of the string,.

e Another example is that “(c|s)at” describes the
expressions “cat” or “sat”. n

P

Regular Expression Grammar

Grouping
Parenthesis can be used to describe the scope and
precedence of operators.

In the example above (c|s) indicates that we can either
begin with c or s but must immediately follow by “at”

Regular Expression Grammar

* Quantification

e Quantification is the notation used to define the
number of symbols that could appear in the string.

* The most common quantifiers are
e 2 *and +

e The ? mark indicates that there is zero or one of the
previous expression.

e The “*” indicates that zero or more of the previous
expression can be accepted.

e The “+” indicates that one or more of the previous
expression can be accepted.

P

Examples of *, ? , +

Other facts
* . matches a single character
* .* matches any string

* [a-zA-Z]* matches any string of alphabetic characters
* [ag].* matches any string that starts withaorg

¢ [a-d].* matches any string that starts with a,b,c or d

* "(ab) matches any string that begins with ab. In
general, to match all lines that begins with any string
use string

* (ab)$ matches any string that ends with ab

' Finding non-matches

* To exclude a pattern
e [Aclass]

* Eg: [*o-9]
Group Matches

e grep ‘<h\([1-4]\)>.*h\([1-3]\)>’ filename
« What patterns match?
e grep ‘h\([1-4]\).*h\1’ filename

o Back-reference

P———

Character Classes

* \d digit [0-9]

* \D non-digit ["0-9]

* \w word character [0-9a-z_A-Z]

* \W non-word character [*0-9a-z_A-Z]

* \s a whitespace character [\t\n\r\f]

* \S a non-whitespace character [* \t\n\r\f]

More regex notation

* {n,m/} at least n but not more than m times

* {n,} - match at least n times

* {n} - match exactly n times

P———

More examples of regex

* Find all files that begins with “guna”
* Find all files that does not begins with “guna”
* Find all files that ends with guna

e Find all directories in current folder. Write them to an
external file.

% ercise '

* An email address must begin with an alpha character and
can have any combination of alpha characters and
characters from {o0..9, %, _, +, -} followed by @ and a
domain name {alpha-numeric} followed by {.} and any
token from the set {edu, com, us, org, net}. Write a regex to
describe this.

,gmmarized Factsa%ou! regex

* Two regular expressions may be concatenated; the
resulting regular expression matches any string
formed by concatenating two substrings that
respectively match the concatenated sub expressions.

* Two regular expressions may be joined by the infix
operator | the resulting regular expression matches
any string matching either sub expression

Summarized Facts about regex

» Repetition takes precedence over concatenation,
which in turn takes precedence over alternation. A
whole sub expression may be enclosed in parentheses
to override these precedence rules

* The backreference \n, where n is a single digit,
matches the substring previously matched by the nth

parenthesized sub expression of the regular
expression.

* In basic regular expressions the metacharacters ?, +, {,
, (, and) lose their special meaning; instead use the
backslashed versions \?, \+, \{, \|, \(, and \).

Text Processing Languages

* awk

e Text processing language

e awk ‘/pattern/’ somefile

e awk '{if ($3 <1980) print $3, " ",$5,$6,$7,$8}' somefile
* sed

e A stream editor

e sed s/moon/sun/ < moon.txt >sun.txt

* Perl
e A powerful scripting language
e We will discuss this next

* We will discuss this very briefly for the fun of it. Sed and Awk
will not be tested. We will extensively study perl though

P

Basics of sed

P

sed basics

* sed is a stream editor
* >sed ‘s/guna/foo/’ filename
e Replaces guna by foo in the file

» first occurrence on each line
e output sent to stdout
* >sed ‘s/guna/foo/g filename
e Globally replaces guna by foo in the file
* If you have special characters {.*[]"$\ }
e Precede with \
e eg: sed ‘s/guna\|[me\.him\]/foobar/g’ filename

P

sed basics

* Replacing more than one token

e sed -e ‘s/guna/foo/g -e‘s/color/colour/g filename
* What if / is part of the string to replace?

e Replace all afs/andrew with afs/cs

e Solution: any character immediately following s is the
delimiter

e sed ‘s#afs/andrew#afs/cs’ filename

P

Basics of awk

Basics of awk

* Uses
e Use information from text files to create reports
e Translating files from one format to another
e Adding functionality to “vi”
e Mathematical operations on numeric files

* awk also has a basic interpreted programming language

* Basic commands

e General form:
« awk ‘<search pattern> {<program actions>}

e awk ‘/guna/ file -- prints all lines with guna
e awk ‘/guna/’ {print $1,$2,$3} ‘ file
e awk -F',' '{if ($5=="MCS") print $2}' roster.txt

exercises

* Download an index.html file from your favorite
website

* use wget

* Change all URL'’s for example, www.cnn.com to
www.foxnews.com

e use sed

P

Coding Examples

ey

~ Scripting Languages

* Many routine programming tasks require custom designed
solutions, environments and approaches

e Extracting data from a roster file

* Scripting languages are ideal for tasks that do not require a
“high level” compiled language solution

e Some argue that this is the real way to learn programming
e No need to worry about static typing

* Scripts are widely used as backend processing languages for
web based applications

e Authenticate passwords
e Extract data from a database
e Create dynamic web pages

opular Scripting Languages

* JavaScript
e Client side processing based on a built in browser interpreter

* PHP

e Server side processing
* Python

e Object oriented, interpreted, data structures, dynamic typing,
dynamic binding, rapid application development, binding
other programming components

* Perl

 Also you can call it an “interpreted” language (more later)

P

Perl

* An interpreted scripting language
 Practical extraction and Report Language

e Developed as a tool for easy text manipulation and
report generation

* Why Perl

e Easy scripting with strings and regex
e Files and Processes

* Standard on Unix
* Free download for other platforms

What’s good for Perl?

* Scripting common tasks
» Tasks that are too heavy for the shell

* Too complicated (or short lived) for C

irst Perl Program

#! usr/bin/perl -w
print (“hello world \n”);

* How does this work?

e Load the interpreter and Execute the program
- perl hello.pl

n interpreted language

* Program instructions do not get converted to machine
instructions.

* Instead program instructions are executed by an
“interpreter” or program translator

* Some languages can have compiled and interpreted
versions

e LISP, BASIC, Python
* Other interpreters
e Java interpreter (byte code) and .net CIL

« Generates just in time machine code

Perl Data Types

* Naming Variables
e Names consists of numbers, letters and underscores
* Names cannot start with a number
* Primitives
e Scalars
« Numeric : 10, 450.56
 Strings
- ‘hello there\n’
- “hello there\n”

Perl Data Types

* arrays of scalars

e ordered lists of scalars indexed by number, starting with
o or with negative subscripts counting from the end.

* associative arrays of scalars, a.k.a" "hashes".

e unordered collections of scalar values indexed by their
associated string key.

Variables

® sa—1 $b=2:

» All C type operations can be applied
° $c = %$a + $b; ++$c; $a +=1;
* $a ** $b - something new?
* For strings
® $s1.$s2 - concatenation
e $s1x $s2 - duplication
°*g$a=s$b
e Makes a copy of $b and assigns to $a

,Ee:ul operations : gl

* substr($s, start, length)
e substring of $s beginning from start position of length
- index string, substring, position
look for first index of the substring in string starting from
position
* index string, substring
look for first index of the substring in string starting from
the beginning
* rindex string, substring
position of substring in string starting from the end of the
string
* length(string) - returns the length of the string

operatio

* $_=string; tr/a/z/; # tris the transliteration operator
replaces all ‘a’ characters of string with a z’ character and assign to $1.
* $_ =string; tr/ab/xz/;

replaces all ‘a’ characters of string with a x’ character and b with z and
assign to $1.

* $_ =string; s/foo/me/;

replaces all strings of “foo” with string “me”
* chop

this removes the last character at the end of a scalar.
* chomp

removes a newline character from the end of a string
- split splits a string and places in an array

0 @array = split(/:/,$name); # splits the string $name at each : and stores
in an array

o The ASCII value of a character $a is given by ord(sa)

Comparison Operators

Conparison Numeric String
Equal = Eq
Not Equal = Ne
Greater than > Gt
Less than ¢ Lt
Greater or equal)= Ge
Less or equal (= Le

Operator Precedence and Associativity

Operator

erxrms

e ——
*

~

X

unary operators
> <= »>= 1t gt le ge
<=> eq ne cmp

—_— W=

+= etc.
=>
ist
ot
nd

r XOor

operators

Associativity
left t
left =
nonassoc -
right "
right !
left =
left o
left -
left <
nonassoc n
nonassoc <
nonassoc =
left &
left I
left &
left |
nonassocc .
right ?:
right =
left
nonassoc 1
right n
left a
left o

source: perl.com

and list operators

(leftward)

and unary + and -

(chomp)

(rightward)

More at: http://www.perl.com/doc/manual/html/pod/perlop.html

rrays

* @array = (10,12,45);
* @A = (‘guna), ‘me’, ‘cmu’, ‘pgh’);
* Length of an array
e slen = $#A +1
* Resizing an array
* slen = desired size

repetition

A While Loop

$x =1;

while ($x < 10){
print “x is $x\n’;
$X++;

.

Until loop

$xX =1;

until ($x >=10){
print “x is $x\n”;
$X++;

J

epetition
Do-while loop
$X = 1;
dof
print "x is $x\n";
SXk
} while ($x < 10);

for statement
for ($x=1; $x < 10; $x++){
print “x is $x\n”;
}
foreach statement
foreach $x (1..9) {
print "x is $x\n";

}

Parsing a roster entry
* S10,guna,Gunawardena,Ananda,SCS,CS,3,1,4,15123 ,A ,,

| Perl 10 |

$size = 10;
open(INFILE, “file.txt”);
$#arr = $size-1; # initialize the size of the array to 10
$1 = 0O;
foreach sline (<INFILE>) {
sarr[$i++] = sline;
if ($1 >= $size) {
$#arr = 2*$#arr + 1; # double the size
$size = $#Harr + 1;

J
j

Perl IO

o open(OUT, “>out.txt”);

 print OUT “hello there\n”;

* Better file open

e open (OUT, “>out.txt”) || die “sorry out.txt could not be
opened\n”

P

Perl and Regex

Perl and Regex

* Perl programs are perfect for regex matching examples

e Processing html files

» Read any html file and create a new one that contains only the
outward links

» Do the previous exercise with links that contain cnn.com only

egex syntax summary

.?+*

*() -grouping
* (exp (exp)) = \1, \2 or $1, $2 backreference
matching

» Agtartwith
* [Mexclusion group]
* [a-z,A-Z] - alpha characters

Perl and regex

open(INFILE, "index.html");
foreach sline (<INFILE>) {
if ($line =~ /guna/){
print $line;
}

}
close(INFILE);

Lazy matching and backreference

open(IN, “guna.htm”);
while (<IN>){
if ($_ =~ /mailto:(.*?)"/){
print $1."\n";
}
}

Global Matching

* How to find all matches on the same line
open(IN, “guna.htm”);
while (<IN>){
if ($_ =~ /mailto:(.*?)"/g){
print $1."\n";
}
}

P

Global Matching and Replacing

The statement
$str =~ s/oo/u/;

would convert "Cookbook" into "Cukbook”, while the
statement

$str =~ s/oo/u/g;
would convert "Cookbook" into "Cukbuk".

P———

CGI Scripts and Perl

* CGl is an interface for connecting application software
with web servers

® CGI scripts can be written in Perl and resides in CGI-
bin
* Example: Passwd authentication

while (<passwdfile>) {
(suser, $spasswd)= split (/:/, $_);

P e —

Library for www in Perl

* LWP contains a collection of Perl modules
e use LWP::Simple;
e $_=get(surl);
e print $_;
* Good reference at
e http://www.perl.com/pub/a/2002/08/20/perlandlwp.html

Getopt

* The Getopt::Long module implements an extended getopt
function called GetOptions().

® Command line arguments are given as
e -n20 or—-num 20
® -n 20 -t test

® use Getopt::Long;
* Simages_to_get = 20;

* Sdirectory =".";
* GetOptions("n=i" => \Simages_to_get, "t=s" => \Sdirectory);

References: http.//perldoc.perl.org/Getopt/Long.html

