
15-123

Systems Skills in C and Unix

Midterm
� Thursday or Friday from 7-9 pm

� No class thursday

� Given in GHC 5205 cluster, linux machines, same as
recitation

� Access to man pages, no internet

� Exam Format
� Starter code given

� Write few functions

� Compile and Test with make files and testers provided.

� Exam Topic
� hashtables

Structures used

topics
� bits, bytes and words

� data and instructions

� representation of data using hexadecimal

� signed and unsigned ints

� Two’s compliment and negative numbers

� Left shift (<<), right shift (>>)

� Bit operations: negation(~), xor(^), or(|) and (&)

� setbit and getbit

� Binary files
� fread and fwrite

� Manipulating bitmaps

Representing Information
� Smallest Data unit is the “bit”

� Smallest addressable unit is the “byte”

� Each computer has a “word” size

� Amount of memory transferred between CPU and RAM

� Indicate the nominal size of integers and pointers

� Most common size is 32-bits

� How many addressable units are there then?

Question

� If a computer has 32-bit word size, what would be the
range of virtual address space?

� What if the computer is a “64-bit” machine?

Data Sizes

� Here are the typical 32-bit allocation for data types (in
bytes)

� char (1), short int (2), int (4), long int (4)
• In compaq alpha long int is 8

� char* (4), float (4), double (8)

� The exact size of data allocation depends on both
compiler and machine

Data value ranges
� <limits.h> library defines the range of values any

data type can assume.
� Applications that are designed to be portable must

use symbolic constants.
� Some examples

� INT_MIN
� Minimum value for a variable of type int.
� –2147483647 – 1

� INT_MAX
� Maximum value for a variable of type int.
� 2147483647

� UINT_MAX
� Maximum value for a variable of type unsigned int.
� 4294967295 (0xffffffff)

� LONG_MIN
� Minimum value for a variable of type long.
� –2147483647 – 1

� LONG_MAX
� Maximum value for a variable of type long.

Storage Classes

� auto
� Typical variables defined inside functions

� static
� Variables that retain values between function calls

� extern
� Declared within a function, but specifications given else

where

� register

Representation formats
� Binary

� Octal

� Decimal

� Hexadecimal

Addressing and byte ordering
� Little Endian

� Least significant byte first (DEC, Intel)

� Big Endian

� Most significant byte first (IBM, Motorola, SUN)

� Application programmers may not care about this
ordering

When byte ordering becomes an

issue
� Communication of binary data over a network

between different machines

� Code written for networking applications must then
do their own conversions between machines

Integer Representations
� Typical 32-bit machine uses

� 32-bit representation for int and unsigned

� Range:

� Compaq alpha uses 64 bits for long int

� Range:

Closer look at signed and unsigned

integers
� Consider a n-bit integer representation of an unsigned

integer

� Consider a n-bit integer representation of a signed
integer

Representing negative numbers

using 2’s complement
� One’s complement

~x

� Two’s complement

1 + ~x

Signed and unsigned numbers
� By default all constant values are signed

� int x = 20, y =0x45

� Can create an unsigned constant using

� unsigned x = 0x123u (or U)

Bit Operations in C
� Bitwise AND (&)

� 0x75 & 0x 96

Bitwise OR (|)

Bitwise negation (~)

XOR (^)

Logic for adding

bit by bit
� Si = (Ai ^ Bi) ^ Cin

� Cout = (Ai & Bi) | ((Ai ^ Bi) & Cin)

Bit adder
� Exercise: Given two unsigned char’s write a bit-by-bit

adder using above formulas. How would you recognize
an overflow situation?

Logical Operations in C

are different
� Logical AND (&&)

� 0x75 && 0x 96

� Logical OR (||)

� Logical Not (!)

Shifting in C
� Left Shift (<<)

� Right shift (>>)

Counting number of 1’s
� Let C(n) be the number of 1’s in int n

� We want to know number of 1’s in the binary
representation of n. Why?

� Eg: if the answer is 1, then we know one of two things

� Find an iterative solution

� Shift 32 times and & with 1

� To find a recursive solution

� What is the relation between C(n) and C(n/2)?

� When n is even

� When n is odd

getbit function
#define MASK(j) (1<<j)

int getBit(char w, unsigned j){

return ((w & MASK(j)) == 0) ? 0 : 1;

}

� What is an alternative way to write this?

printBinary
� Complete the function printBinary

void printBinary(char w){

}

setbit function
#define MASK(j) (1<<j)

int setBit(char w, unsigned j, short value){

if (value == 0) return (w & ~MASK(j));

else if (value == 1) return w | MASK(j);

else return w;

}

Masking
� Masking is a technique to extract bits from a value

� Eg: Determine if the number is even or odd

Exercise
� Complete the function bitReverse

/* reverse the bit pattern of the *ptr*/

void bitReverse(char* ptr, int numbits){

}

Bitmap format
� Developed by Microsoft

� Each pixel is represented by RGB

� 3 bytes per pixel

� Each byte value vary from 0-255

� 0- darker, 1-lighter

� Each bmp file has a header

� 54 bytes

Header info

first 14 bytes
typedef struct {

unsigned short int type; /* BMP type identifier */

unsigned int size; /* size of the file in bytes*/

unsigned short int reserved1, reserved2;

unsigned int offset; /* starting address of the byte */

} HEADER;

Binary Files

Binary Files

� Any file is a collection of bytes

� File can be read one byte at a time

� fread

� Data can be written to a file one byte at a time

� fwrite

Image processing

RGB Color Scheme

Source: wikipedia

Exercises
� Read a BMP image and find its file size

Header Info

next 40 bytes
The next 40 bytes are reserved for a structure as follows.

typedef struct {

unsigned int size; /* Header size in bytes */

int width,height; /* Width and height in pixels */

unsigned short int planes; /* Number of color planes */

unsigned short int bits; /* Bits per pixel */

unsigned int compression; /* Compression type */

unsigned int imagesize; /* Image size in bytes */

int xresolution,yresolution; /* Pixels per meter */

unsigned int ncolors; /* Number of colors */

unsigned int importantcolors; /* Important colors */

} INFOHEADER;

Exercises
� Read a BMP image and find its length and width

Application

Image Processing

512 x 512 image

Application

Dealing with Byte alignments

361x315 image
File size = 342228

Exercises
� Remove red color altogether from an image

� Make a color RGB image BW

� hard

Bit packingstruct {

unsigned leading : 3;

unsigned flag1 : 1;

unsigned flag2 : 1;

trailing : 11;

} flags;

� fields within the struct are not variables
� cannot be used with & the address operator

� printf(“The leading field is %d \n”, flags.leading);

Code Examples

