15-123
Systems Skills in C and Unix

idterm

* Thursday or Friday from 7-9 pm
* No class thursday

* Given in GHC 5205 cluster, linux machines, same as
recitation

* Access to man pages, no internet
* Exam Format

e Starter code given

o Write few functions

e Compile and Test with make files and testers provided.
* Exam Topic

» hashtables

ructures used

typedef struct HASH NODE {
char *key; /* pointer to the key for node */

char *value; /* pointer to the value for the node */
struct HASH NODE *next; /* pointer to next node */
} hash node;

typedef struct hashtable {

hash node **table; /* head node of the list */

int size; /* number of cells*/

int cellsused; /* cells used */

int numnodes; /* number of nodes in the table */

double loadfactor; /* 1f = numnodes/cellsused */

int (*EB)¥dy) (char*, int); /* hash function */

int (EGPEW) (const void*, const void¥); /* equal function pointer */
void (3LLREY) (void¥); /* takes a pointer to a key and frees it*/
void (MILTINEINE) (void*); /* takes a pointer to a value and frees it*/

} hashtable;

! opics ' “

* bits, bytes and words
* data and instructions
* representation of data using hexadecimal
* signed and unsigned ints
* Two's compliment and negative numbers
* Left shift (<<), right shift (>>)
* Bit operations: negation(~), xor("), or(|) and (&)
* setbit and getbit
* Binary files
e fread and fwrite
* Manipulating bitmaps

P

Representing Information

* Smallest Data unit is the “bit”
* Smallest addressable unit is the “byte”

* Each computer has a “word” size
e Amount of memory transferred between CPU and RAM
e Indicate the nominal size of integers and pointers
e Most common size is 32-bits

e How many addressable units are there then?

Question

* If a computer has 32-bit word size, what would be the
range of virtual address space?

* What if the computer is a “64-bit” machine?

P———

Data Sizes

» Here are the typical 32-bit allocation for data types (in
bytes)
e char (1), short int (2), int (4), long int (4)

* In compagq alpha long int is 8

e char* (4), float (4), double (8)

* The exact size of data allocation depends on both
compiler and machine

ata value ranges

* <limits.h> library defines the range of values any
data type can assume.

* Applications that are designed to be portable must
use symbolic constants.

* Some examples

« INT_MIN
+ Minimum value for a variable of type int.
© 2147483047 -1
« INT_MAX
+ Maximum value for a variable of type int.
© 2147483647
- UINT_MAX
» Maximum value for a variable of type unsigned int.
o 4294967295 (oxfftttfr)
- LONG_MIN
+ Minimum value for a variable of type long.
© 2147483047 -1
- LONG_MAX
« Maximum value for a variable of type long.

Storage Classes

° auto
e Typical variables defined inside functions

® static
e Variables that retain values between function calls

¢ extern

e Declared within a function, but specifications given else
where

° register

Representation formats

* Binary
® Octal
* Decimal

* Hexadecimal

P

Addressing and byte ordering

e Little Endian
e Least significant byte first (DEC, Intel)

* Big Endian
e Most significant byte first (IBM, Motorola, SUN)

* Application programmers may not care about this
ordering

%en byte ordering Eeco! mes an

issue

* Communication of binary data over a network
between different machines

* Code written for networking applications must then
do their own conversions between machines

Integer Representations

* Typical 32-bit machine uses

e 32-bit representation for int and unsigned

» Range:

e Compaq alpha uses 64 bits for long int

» Range:

goser look at signe% an% unsu‘gned

integers

* Consider a n-bit integer representation of an unsigned
integer

* Consider a n-bit integer representation of a signed
integer

presenting negative numbers
using 2’s complement

* One’s complement

~X

* Two’s complement

1+ ~X

Signed and unsigned numbers

* By default all constant values are signed

* int X = 20, y =0X45

* Can create an unsigned constant using
e unsigned x = ox123u (or U)

Bit Op

era

AND gate

Input, —
Inputg —

} Output

A| B | Output
0]0 0
01

1{O 0
1|1 1

t (tionsin C
* Bitwise AND (&)
* 0x75 & 0X 96

P———

Bitwise OR (|)

2-input OR gate
Input
P AD Output
Inputg

Output
0

|
|

n—nt—too>
— O | =|O|m

P———

Bitwise negation (")

X‘DO? output

XOR ()

Exclusive-OR gate

nput, >D Output
Inputg

v—-v—-oo>
~ 0| =0t
o

“togic for adding
bit by bit

* Si = (Ai A Bi) A Cin
* Cout = (Ai & Bi) | ((Ai » Bi) & Cin)

adder

» Exercise: Given two unsigned char’s write a bit-by-bit
adder using above formulas. How would you recognize
an overflow situation?

are different

* Logical AND (&&)
e 0x75 && 0x 96

* Logical OR (||)

* Logical Not (!)

P———

‘ Shifting in C

o Left Shift (<<)

* Right shift (>>)

| - Counting number of 1’s

» Let C(n) be the number of 1’s in int n

* We want to know number of 1’s in the binary
representation of n. Why?

e Eg: if the answer is 1, then we know one of two things
* Find an iterative solution

e Shift 32 times and & with 1
* To find a recursive solution

e What is the relation between C(n) and C(n/2)?

« When n is even
« When nisodd

getbit function

#define MASK(j) (1<<j)
int getBit(char w, unsigned j){

return ((w & MASK(j)) ==0) ? 0 : 1;
}

* What is an alternative way to write this?

printBinary

* Complete the function printBinary

void printBinary(char w){

setbit function

#define MASK(j) (1<<j)

int setBit(char w, unsigned j, short value){
if (value == o) return (w & ~MASK(j));
else if (value == 1) return w | MASK(j);

else return w;

J

AL

Masking
* Masking is a technique to extract bits from a value
* Eg: Determine if the number is even or odd

Exercise

* Complete the function bitReverse

/* reverse the bit pattern of the *ptr*/
void bitReverse(char* ptr, int numbits){

Bitmap format
* Developed by Microsoft

» Each pixel is represented by RGB
e 3 bytes per pixel

* Each byte value vary from o-255
* 0- darker, 1-lighter

* Each bmp file has a header
* 54 bytes

%a%er info |

first 14 bytes

typedef struct {
unsigned short int type; /* BMP type identifier */
unsigned int size; /* size of the file in bytes*/
unsigned short int reservedi, reserved2;

unsigned int offset; /* starting address of the byte */
} HEADER,;

P

Binary Files

Binary Files

* Any file is a collection of bytes
* File can be read one byte at a time
e fread

* Data can be written to a file one byte at a time

o fwrite

\

fread, fwrite - binary stream input/output

SYNOPSIS

#include <stdio.h>
size t fread(void *ptr, size t size, size t nmemb, FILE *stream)’

size t fwrite(const void *ptr, size t size, size t nmemb,
FILE *stream) ;

DESCRIPTION

RETURN

The function fread() reads nmemb elements of data, each size bytes
long, from the stream pointed to by stream, storing them at the
location given by ptr.

The function fwrite() writes nmemb elements of data, each size
bytes long, to the stream pointed to by stream, obtaining them

from the location given by ptr.

For non-locking counterparts, see unlocked stdio(3).

VALUE
fread() and fwrite() return the number of items successfully read
or written (i.e., not the number of characters). If an error

occurs, or the end-of-file is reached, the return value is a short
item count (or zero).

P

Image processing

- RGB Color Scheme

Source: wikipedia

P———

Exercises

* Read a BMP image and find its file size

ader Info
next 40 bytes

The next 40 bytes are reserved for a structure as follows.

typedef struct {
unsigned int size; /* Header size in bytes */
int width,height; /* Width and height in pixels */

unsigned short int planes; /* Number of color planes */
unsigned short int bits; /* Bits per pixel */

unsigned int compression; /* Compression type */
unsigned int imagesize; /* Image size in bytes */

int xresolution,yresolution; /* Pixels per meter */
unsigned int ncolors; /* Number of colors */
unsigned int importantcolors; /* Important colors */

} INFOHEADER;

Exercises
* Read a BMP image and find its length and width

WApplication

Image Processing

512 X 512 image

%p%ication "

Dealing with Byte alignments

361x315 image
File size = 342228

Exercises

* Remove red color altogether from an image

* Make a color RGB image BW
e hard

Bit.packing

unsigned leading : 3;

unsigned flagi : 1;
unsigned flag2 : 1;
trailing : 11
} flags;
¢ fields within the struct are not variables

e cannot be used with & the address operator

* printf(“The leading field is %d \n”, flags.leading);

P

Code Examples

