Collision Resolution
&
Implementation

15-123
Systems Skills in C and Unix

What is a collision

* A collision occurs when two keys map to the
same location

 Why do collisions occur?
— Mainly due to bad hash functions

— Eg: imagine hashing 1000 keys, where each key is
oh average 6 characters long, using a simple
function like H(s) = > characters

How to resolve collisions

Separate Chaining

AS‘L’

fooer* bar

with

long

keye-+>

link o+ Lr| o=t

list

int &>

chare—topen

hash

find

in e

>

ontoer—stypes—»

gqueue

(S PR [R
oy o b=y (=] (o= O8] [(5,1 EN (O] (] Y

tester>

fail

IRl

info

Separate Chaining

* Pros

— No probing necessary
* Each node has a place in the same hashcode

— List gets never full
e Performance can go down though

* Cons
— Complicated implementation of array of linked lists
— Still lots of collisions can create a “bad” hash table

Load factor

* Need to keep the load factor reasonably under
control

 |f load factor becomes too large, rehash

Rehash

 The process of creating a larger table to
distribute the keys better

Implementation

struct hashtable {
void™® list;

Int size;

Client implementation

int hash(void* s, int m) {
/* this takes a pointer to a key and
computes the hash code. m is the table
Size
*/
}

Code Examples

