Concept of
Hashing

15-123
Systems Skills in C and Unix

What is hashing

» Internet has grown to millions of users
generating terabytes of content every day

» With such large data sets, how do we find
anything?

» Two standard search techniques

> Linear search - O(n)
> Binary Search - O(log n)

» What if we need to find things even quicker?

Finding things in O(1)

» Suppose our intent is to find an item in O(1)

> That is, constant time or time does not depend on
data size n

» In most cases, we only care about
> Finding and retrieving things quickly
- Updating and inserting things quickly
» We do not care about
- Order statistics of the data

Finding things quickly
71 Strategy - hashing

1 Data Structure - hash table

Maps

A relation between two sets defined by a simple function

P

Hash Function

» A hash function maps a key to a value

» Simplest Form
- A[i] - a mapping of index (an integer) to a value
» The hash table idea is much more general
- Keys don’t have to be integers
- H("*guna”) = “professor”
» If a hash function H can be defined, then
information can be stored using (key,value)
pairs

What makes a good hash function?

» A hash function must be
- Easy to calculate
> Must avoid “collisions”
» What do we mean by “easy to calculate™
- The cost of computing the hash value must be
minimized
» What do we mean by “collisions™?

> |t is possible that two keys can map to the same
value (unless you can come up with a perfect hash
function)

> Finding the perfect hash function is “hard”

Example

» Take a simple set of strings {“abc”, “bda”,
“Cad”}

» Define a hash function as follows

- H(*abc”) = sum of the characters % 5
- Where n = 5 is the table size

» Find H("*abc”), H(*bda”), H(“cad”)

Storing the values

P

Questions

» What happens if “abc” and “bac” hash into the
same location?

» How do we resolve it?

» Using a collision resolution strategy

Using a better hash function

» H(s) = X sum of characters has too many
collisions

» Define H(s) as a polynomial representation of
characters of s

Making things more efficient

» How can we calculate H(s) more efficiently?

Good hash function

int hash_string(char* s, int n, int m) {
inta = 1664525;intb =1013904223;
/* inlined random number generator */
int r = O0x1337beef; /* initial seed */
int h = 0; /* empty string maps to 0 */
for(inti=0;i<n;i++){
h = r*h + (int)s[il;
r = r*a + b; linear congruential random no */

J

h=h%m; /* reduce to range */

h += m; /* make positive, if necessary */
return h;

Questions

» Suppose we would like to hash 10000 keys,
(each up to a 5 character string) into a hash
table of size 12000. We use the function
- H(string) = X sum of the characters of the string

» What would be the key distribution?

Collision Resolution

15-123
Systems Skills in C and Unix

What is a collision

» A collision occurs when two keys map to the
same location

» Why do collisions occur?
- Mainly due to bad hash functions
> Eg: imagine hashing 1000 keys, where each key is
on average 6 characters long, using a simple
function like H(s) = X characters

Separate Chaining

AS e+

fooer+ bar

with

long

keye+>

link o= ur| o=t

list

int &>

chare—topen

hash

find

in e

ontoe—¢ty pes—p»

queue

el Ll Lt
ol=lael®@|N(a|v|s|win= o

tester>

fail

IRl

info

Separate Chaining

» Pros

- No probing necessary
- Each node has a place in the same hashcode

> List gets never full
- Performance can go down though

» Cons
- Complicated implementation of array of linked lists
o Still lots of collisions can create a “bad” hash table

Coding Examples

