
15-123

Systems Skills in C and Unix

� Internet has grown to millions of users
generating terabytes of content every day

� With such large data sets, how do we find
anything?

� Two standard search techniques
◦ Linear search – O(n)

◦ Binary Search – O(log n)

� What if we need to find things even quicker?

� Suppose our intent is to find an item in O(1)
◦ That is, constant time or time does not depend on
data size n

� In most cases, we only care about
◦ Finding and retrieving things quickly

◦ Updating and inserting things quickly

� We do not care about
◦ Order statistics of the data

� Strategy – hashing

� Data Structure – hash table

keys values

A relation between two sets defined by a simple functionA relation between two sets defined by a simple functionA relation between two sets defined by a simple functionA relation between two sets defined by a simple function

� A hash function maps a key to a value

� Simplest Form
◦ A[i] - a mapping of index (an integer) to a value

� The hash table idea is much more general
◦ Keys don’t have to be integers

◦ H(“guna”) = “professor”

� If a hash function H can be defined, then
information can be stored using (key,value)
pairs

� A hash function must be
◦ Easy to calculate

◦ Must avoid “collisions”

� What do we mean by “easy to calculate”?
◦ The cost of computing the hash value must be
minimized

� What do we mean by “collisions”?
◦ It is possible that two keys can map to the same
value (unless you can come up with a perfect hash
function)

◦ Finding the perfect hash function is “hard”

� Take a simple set of strings {“Take a simple set of strings {“Take a simple set of strings {“Take a simple set of strings {“abcabcabcabc”, “”, “”, “”, “bdabdabdabda”, ”, ”, ”,
“cad”}“cad”}“cad”}“cad”}

� Define a hash function as followsDefine a hash function as followsDefine a hash function as followsDefine a hash function as follows
◦ H(“H(“H(“H(“abcabcabcabc”) = sum of the characters % 5”) = sum of the characters % 5”) = sum of the characters % 5”) = sum of the characters % 5

◦ Where n = 5 is the table sizeWhere n = 5 is the table sizeWhere n = 5 is the table sizeWhere n = 5 is the table size

� Find H(“Find H(“Find H(“Find H(“abcabcabcabc”), H(“”), H(“”), H(“”), H(“bdabdabdabda”), H(“cad”)”), H(“cad”)”), H(“cad”)”), H(“cad”)

� What happens if “abc” and “bac” hash into the
same location?

� How do we resolve it?

� Using a collision resolution strategy

� H(s) = ∑ sum of characters has too many H(s) = ∑ sum of characters has too many H(s) = ∑ sum of characters has too many H(s) = ∑ sum of characters has too many
collisionscollisionscollisionscollisions

� Define H(s) as a polynomial representation of Define H(s) as a polynomial representation of Define H(s) as a polynomial representation of Define H(s) as a polynomial representation of
characters of scharacters of scharacters of scharacters of s

� How can we calculate H(s) more efficiently?How can we calculate H(s) more efficiently?How can we calculate H(s) more efficiently?How can we calculate H(s) more efficiently?

int hash_string(char* s, int n, int m) {

int a = 1664525; int b = 1013904223;

/* inlined random number generator */

int r = 0x1337beef; /* initial seed */

int h = 0; /* empty string maps to 0 */

for (int i = 0; i < n; i++) {

h = r*h + (int)s[i];

r = r*a + b; linear congruential random no */

}

h = h % m; /* reduce to range */

h += m; /* make positive, if necessary */

return h;

}

� Suppose we would like to hash 10000 keys,
(each up to a 5 character string) into a hash
table of size 12000. We use the function
◦ H(string) = ∑ sum of the characters of the string

� What would be the key distribution?

15-123

Systems Skills in C and Unix

� A collision occurs when two keys map to the
same location

� Why do collisions occur?
◦ Mainly due to bad hash functions

◦ Eg: imagine hashing 1000 keys, where each key is
on average 6 characters long, using a simple
function like H(s) = ∑ characters

� Pros
◦ No probing necessary

� Each node has a place in the same hashcode

◦ List gets never full

� Performance can go down though

� Cons
◦ Complicated implementation of array of linked lists

◦ Still lots of collisions can create a “bad” hash table

