
Copyright @ 2008 Ananda Gunawardena

Lecture 25

Systems Programming

Process Control

A process is defined as an instance of a program that is currently running. A uni

processor system or single core system can still execute multiple processes giving the

appearance of a multi-core machine. A call to an executable program spawns a process.

For examples, if a mail program is called by n users then n processes or instances are

created and executed by the unix system. Many operating systems including windows

and unix can execute many processes at the same time. When a program is called, a

process is created and a process ID is issued. The process ID is given by the function

getpid() defined in <unistd.h>.

The prototype for pid() is given by

#include <unistd.h>

pid_t getpid(void);

In a single core machine, each process takes turns running for a short duration in time

interval called a timeslice. The unix command ps can be used to list all current process

status in your shell.

� ps

PID TTY TIME CMD

10150 pts/16 00:00:00 csh

31462 pts/16 00:00:00 ps

The command ps lists the process ID (PID), the terminal name(TTY), the amount of time

the process has used so far(TIME) and the command it is executing(CMD). Ps command

only displays the current user processes. But we can get all the processes with the flag

(-a) and in long format with flag (-l)

� ps –a

� ps -l

� ps -al

Information provided by each process may include the following.

PID The process ID in integer form

PPID The parent process ID in integer form

STAT The state of the process

TIME CPU time used by the process (in seconds)

TT Control terminal of the process

COMMAND The user command that started the process

Copyright @ 2008 Ananda Gunawardena

Each process has a process ID that can be obtained using the getpid() a system call

declared in unistd.h. Here is an example of using the getpid function.

printf("The current process %d \n",getpid());

printf("The parent process is %d \n",getppid());

printf("The owner of this process has uid %d \n",getuid());

sleep(1);

Each process has a parent process and the parent process ID can be

obtained by the function getppid(). A process can be terminated using

the kill command

� kill -9 pid

or if the process is in the foreground then it can also be killed by cntrl-c.

Background Processes
A long running program can be controlled by introducing a process running in the

background. For example, we can run a C program in the background by typing

> ./a.out &

Background processes continues to run even when you logout. You can check the status

of a background process by typing > ps at the login.

Process related Commands
The process related system calls in UNIX include fork(), exec() [many variations of

this], wait() and exit() system calls. Using exec, an executable binary file (eg: a.out) can

be converted into a process. An example of using exec is implementing a shell program

or a command interpreter. A shell program takes user commands and executes them. We

will see an example of a simple shell soon.

Forking new Processes

A new process can be created using the command fork. The fork() function creates a

child process which is exactly identical to the parent process except for the return value

of fork(). The value zero gets returned to the child and PID gets returned to the parent.

An example of using fork() is

if (fork() == 0) { printf(“This is a message from the child\n”);}

else { printf(“This is a message from the parent\n”);}

if the fork process is failed, no child process is created and fork returns -1.

int PID = fork();

if (PID == -1) printf(“the process creation failed\n”);

Copyright @ 2008 Ananda Gunawardena

Let us consider the following program that uses the child to compute partial sums and

parent to compute the partial products of an array of integers.

int A[]={1,2,3,4,5,6};

int sum=0, pdt=1, PID, i;

if ((PID=fork())==0){

 for (i=0;i<6;i++) sum += A[i];

 printf("This is child process computed sum %d \n", sum);

}

if (PID <0) {

 fprintf(stderr,"problem creating a process \n");

}

if (PID >0) {

 for (i=0;i<6;i++) pdt *= A[i];

 printf("The parent process completed the product %d \n", pdt);

}

Executing another process
There are many variations of the exec system call that can be used to execute a binary

executable file. Exec programs do not return. It replaces the current process with the new

process. If the exec command fails, then it returns 1. We will consider some useful forms

of exec commands.

execl --- takes the path name of a binary executable as its first argument, the rest of the

arguments are the command line arguments ending with a NULL.

Example: execl("./a.out", NULL)

execv – takes the path name of a binary executable as its first argument, and an array of

arguments as its second argument.

Example: static char* args[] = {“ “, "cat.txt", "test1.txt", NULL};
 execv("/bin/cp", args);

The empty string “ “ can be replaced by the command itself (eg “ls”) or leave it as “ “.

execlp --- same as execl except that we don’t have to give the full path name of the

command.
 execlp("ls", NULL)

Copyright @ 2008 Ananda Gunawardena

The UNIX Shell
After login, we interact with unix through a program called “shell”. There are number of

shells in use, csh(Berkeley unix C-shell), bsh (bourne Shell) etc. You can find the current

shell by typing ps. The shell program that is invoked upon login is called the “login

shell”. The shell is a command interpreter as well as a command programming language

with many modern programming constructs. We will learn how to write shell programs

(or shell scripts) later. Shell takes commands such as ls, cp and calls the correct binaries

to execute the command. Shell can also take a binary executable code of your C program,

and start a process to execute that code. Shell continues to provide a prompt for the next

command until shell is terminated. All shells are programmed in C. The command

interpretation cycle of a shell is given as follows.

 Prompt

 Read SHELL Execute

 Command Command

 Transform

 Command

A simple form of a command looks like this

> command [arg(s)]

Examples: > ls

 > cp file1 file2

After reading the command, the shell must interpret the command to understand its form.

It needs to break down the command and command line arguments (if any). The shell

then invokes a child process and calls the child process to execute the command by using

one of the exec system calls. The binaries associated with the command are interpreted

and executed. Let us now look at a program that implements a simple shell. This shell can

only execute commands with no arguments such as ls or who.

int PID;

char cmd[256];

while (1) {

 printf("cmd: ");

 scanf(“%s”,cmd);

 if (strcmp(cmd,"e")==0) /* loop terminates if type 'e'*/

 exit(0);

 /* creates a new process. Parent gets the process ID. Child gets 0 */

 if ((PID=fork()) > 0)

 wait(NULL);

 else if (PID == 0) /* child process */

 {

 execlp (cmd,cmd,NULL);

Copyright @ 2008 Ananda Gunawardena

 /* exec cannot return. If so do the following */

 fprintf (stderr, "Cannot execute %s\n", cmd);

 exit(1); /* exec failed */

 }

 else if (PID == -1)

 {

 fprintf (stderr, "Cannot create a new process\n");

 exit (2);

 }

}

Exiting a process
System function exit allows termination of a process. The prototype for

exit is

#include <stdlib.h>

void exit(int status);

The value of the status may be EXIT_SUCCESS(0), EXIT_FAILURE(1) or any

other value that is available to a parent process.

Waiting for a Process
wait, waitpid - wait for a child process to stop or terminate

#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

It returns the PID of the child and the exit status gets placed in status.

main() {

 int child_status, pid, pidwait;

 if ((pid = fork()) == 0) {

 printf(“This is the child!\n”);

 }

 else {

 pidwait = wait(&child_status);

 printf(“child %d has terminated\n”, pidwait);

 }

 exit();

}

Questions about this Lecture

1. Why does not exec return (they have to maintain the same environment

variables? See

http://www.opengroup.org/onlinepubs/000095399/functions/exec.html

2. Do fork processes share the same variable space? Answer is no. But I need to

know why.

Copyright @ 2008 Ananda Gunawardena

Exercises

1. Modify the program (shell.c) so it can execute any shell command with upto 2

arguments. Eg: cp file1 file2 , mv file1 file2, ls –l

2. Write a program that will read a directory containing a set of files, create a new

subfolder called “backup” on same folder and copy all the files from directory to

the new sub directory “backup”. You are supposed to use exec() with “cp”

command. Create a child process for each file that can execute each of the cp

commands to copy the file from directory to subfolder “backup”

3. Why would you use fork() to create new processes in a uni-processor machine?

Discuss a scenario where this can be useful.

