
Copyright @ 2009 Ananda Gunawardena

Lecture 20-2
Perl Programming

Perl (Practical Extraction and Report Language) is a powerful and adaptable scripting
language. Perl became very popular in early 90’s as web became a reality. Perl is ideal
for processing text files containing strings. Perl is also good for processing web pages
containing tags of different types (image tags, url tags etc). These tags or substrings can
be extracted using Perl commands. Perl programs are ideal for managing web
applications, such as passwd authentication, database access, network access, and multi-
platform capabilities. Perl is also good for working with html web forms, obtaining user
inputs, enabling cookies and tracking clicks and access counters, connecting to mail
servers, integrating perl with html, remote file management via the web, creating
dynamic images among many other capabilities.

Perl programs are not compiled but interpreted. Perl interpreter in your unix system can
be found by typing

� where perl

It may show
/usr/local/bin/perl
/usr/bin/perl

giving the path of the perl interpreter. Perl interpreter is used to run perl programs.

Let us start with a simple Hello world program in perl.

#!/usr/local/bin/perl

print "Hello World\n";

WARNING: The #!/usr/local/bin/perl must be the first line in the file.

DO NOT ADD comments # before that line

Assuming this is in a file called hello.pl, we can run the program by

typing

� perl hello.pl

Or you can set the executable permission for the file and run the

program as follows.

� chmod +x hello.pl

� ./hello.pl

Copyright @ 2009 Ananda Gunawardena

Scalars in Perl
A scalar in perl is either a numeric (103, 45.67) or a string. A string

is a sequence of characters where each character is represented by 8-

bits. There is also null string or the shortest possible string that

has no characters. A string inside single quotes (‘hello there’) is a

literal string, and double quoted strings can have escape characters

such as ‘\t’ (tab) inside them for formatting purposes. A double quoted

string is very much like a C string.

Strings in Perl
Perl strings can be surrounded by single quotes or double quotes.

Single quote means string must be interpreted literally and double

quotes could have “\n” type escape characters that have special

meaning. So for example

print “hello world\n”; � prints the string hello world with a new line

print ‘hello world\n’; � prints the string hello world\n

Operators for Strings
Strings can be concatenated using “.” Operator. So if we define two

strings s1 and s2 and concatenate and store them in a string s3, you

would do it like this in perl.

$s1 = “hello”;

$s2 = “world”;

$s3 = $s1.$s2;

Note that variable declarations are preceded by $. Other useful

functions that can operate on strings are:

• substr($s,start, length) --- substring of $s from start of length

• index string, substring, position – look for first index of the

substring in string starting from position

• index string, substring – look for first index of the substring

in string starting from the beginning

• rindex string, substring –- position of substring in string

starting from the end of the string

• length(string) – returns the length of the string

• $_ = string; tr/a/z/; -- replaces all ‘a’ characters of string

with a ‘z’ character and assign to $1.

• $_ = string; tr/ab/xz/; -- replaces all ‘a’ characters of string

with a ‘x’ character and b with z and assign to $1. More

variations available.

• $_ = string; s/foo/me/; -- replaces all strings of “foo” with

string “me”

• chop – this removes the last character at the end of a scalar.

• chomp – removes a newline character from the end of a string

• split – splits a string and places in an array

o @array = split(/:/,$name); # splits the string $name at

each : and stores in an array (see arrays ahead)

o The ASCII value of a character $a is given by ord($a)

Copyright @ 2009 Ananda Gunawardena

Comparison Operators

Comparison Numeric String

Equal == Eq

Not Equal != Ne

Greater than > Gt

Less than < Lt

Greater or equal >= Ge

Less or equal <= Le

Another string operator of special interest is the letter x (lower

case). This operator causes the variable to be repeated. For example,

$s1 = “guna”;

$s2 = $s1 x 3;

will cause $s2 to store the string “gunagunaguna”

Operator Precedence and Associativity

 Associativity Operator
 left terms and list operators (leftward)

 left ->

 nonassoc ++ --

 right **

 right ! ~ \ and unary + and -

 left =~ !~

 left * / % x

 left + - .

 left << >>

 nonassoc named unary operators (chomp)

 nonassoc < > <= >= lt gt le ge

 nonassoc == != <=> eq ne cmp

 left &

 left | ^

 left &&

 left ||

 nonassoc

 right ?:

 right = += -= *= etc.

 left , =>

 nonassoc list operators (rightward)

 right not

 left and

 left or xor

source: perl.com

Copyright @ 2009 Ananda Gunawardena

Variables in Perl
We have already seen how to define a variable. Perl has three types of

variables - scalars (strings or numeric’s), arrays and hashes.

Let us look at defining scalar variables.

$x = 45.67;

$var = ‘cost’;

So a statement such as

print “$var is $x”;

will print “cost is 45.67”. Simple arithmetic can be performed on

numeric variables such as

$x = 563;

$y = 32.56;

$y++;

$x += 3;

Arrays
Array in perl is defined as a list of scalars. So we can have arrays of

numerics or strings. For example,

@array = (10,12,45);

@A = (‘guna’, ‘me’, ‘cmu’, ‘pgh’);

Defines arrays of numeric’s and strings. To process the ith element of

an array A (array indices starts from 0) we simply refer to $A[$i]. For

example, we can write

$i = 1;

$A[$i] = ‘guna’;

this sets the element in A with index 1 to “guna”.

The length of an array A can be found using $#A. The length of an
array is one more than $#A. That is

$len = $#A + 1

You can also find length of an array as

$len = @A;

To resize an array, we can simply set the $#A to desired size.
So for example,

@array = (10,12,45);

$#array = 1;

Will result in an array of size 2 or simply

@array = (10,12);

Copyright @ 2009 Ananda Gunawardena

Control Structures (Loops and Conditionals)
There are various loop controls in perl. Here are some example.

A While Loop
$x = 1;

while ($x < 10){

 print “x is $x\n”;

 $x++;

}

Until loop
$x = 1;

until ($x >= 10){

 print “x is $x\n”;

 $x++;

}

Do-while loop
$x = 1;

do{

 print "x is $x\n";

 $x++;

} while ($x < 10);

for statement
for ($x=1; $x < 10; $x++){

 print “x is $x\n”;

}

foreach statement
foreach $x (1..9) {

 print "x is $x\n";

}

There are variations to this code

@range1 = (1..5);

@range2 = (10,15..20);

foreach $i (@range1, @range2) {

 print $i;

}

Question: What would be the output of the above code?

Note that two arrays can easily be concatenated to create a new array.

Copyright @ 2009 Ananda Gunawardena

Example: A perl program code that performs bubble sort on an array of

strings is given below.

for ($i=0; $i<n; $i++)

{ for ($j=0; $j<n-$i-1; $j++)

 { if ($arr[$j] gt $arr[$j+1])

 {

 $tmp = $arr[$j];

 $arr[$j]=$arr[$j+1];

 $arr[$j+1]=$tmp;

 }

 }

}

Note: to sort an array using built in utilities use: sort(@A);

Example: Write a Perl program that prints the current time.

$time = localtime;

print “The time is $time”.”\n”;

PERL I/O
Handling files in Perl more or less similar to how other high level

programming languages handle files. Perl provides the standard file

handlers such as STDIN, STDOUT, and STDERR.

Reading Data from STDIN
Interactive IO is input given to the perl program via STDIN and STDOUT. For example,
we can read a line from the STDIN as follows.

$name = <STDIN>;

This variable $name contains the newline character that can be removed using,

chomp($name);

Reading Data from a File
Suppose we’d like to read a bunch of strings from a file into an array. Let us assume that
we start with a default size of 10 and then doubles the size of the array when we need
more space. We can accomplish the task as follows.
$size = 10;
open(INFILE, “file.txt”);
$#arr = $size-1; # initialize the size of the array to 10
$i = 0;
foreach $line (<INFILE>) {
 $arr[$i++] = $line;
 if ($i >= $size) {
 $#arr = 2*$#arr + 1; # double the size
 $size = $#arr + 1;
 }

Copyright @ 2009 Ananda Gunawardena

}

Writing to a File
To open a file for writing is similar to open the file for reading except the file name is
preceded by “>”. For example

open(OUT, “>out.txt”);

associates file “out.txt” with the file handle OUT so output can be written to this file. For
example,

print OUT “hello there\n”;

now prints the string “hello there” to the file out.txt

Warning: A file handle that is not successfully opened may not show any warnings and
any read or write will result in no action. To make sure file was opened properly, we can
use the “die” command as follows.

open (OUT, “>out.txt”) || die “sorry out.txt could not be opened\n”;

The function die gets executed only if open is false.

Example: The following Perl code reads from the passwd file and writes the passwords
to an output file.

open(OUT, “>passwd.txt”);
open(IN, “/etc/passwd”);
while (<IN>){
 chomp;
 print OUT “$_\n”;
}

We can search, sort, and pretty much do anything with an array as in other major
programming languages. This is only a small sample of what perl programs can do. There
is ton of stuff on the web for learning perl. A good reference for beginners introduction to
Perl is available @ http://www.perl.com/pub/a/2000/10/begperl1.html

Regular Expressions in Perl
As we learnt in the previous lesson, regular expression is a pattern

that defines a class of string that fits into the pattern. Perl has

strong regex capabilities and that makes perl an ideal language to do

tasks that require text parsing.

Suppose we need to read a file of html text and parse them into

separate lines. Then we can think about how to parse individual words,

tags and tokens within the html file. For example, consider the source

code for my webpage, index.html (http://www.cs.cmu.edu/~guna) and list

Copyright @ 2009 Ananda Gunawardena

all the lines that contain the word “guna”. We can accomplish this task

by using a regular expression (regex). The perl code is:

#! /usr/local/bin/perl

open(INFILE, "index.html");
foreach $line (<INFILE>) {
 if ($line =~ /guna/){
 print $line; #read a line of text and chop the newline
 }
 }
close(INFILE);

and here is the output produced by the above code.

guna at cs dot cmu dot edu
at pgh-lk website.
<td></td>

So 3 lines matched (out of 312 lines in index.html) and each line has the substring
“guna”. The regular expression /guna/ indicates we are looking for any line that contains
“guna” as a substring.

There are few things that are new in the above code. The regex is enclosed between / /
and the binding operator =~ in perl (negation is !~) is used to look for substring
matching the expression enclosed within / /. We can do more with regular expressions.

For example, suppose we need to look for all the email tags within the html file. We
know that mail tags typically is enclosed in a line that contains

“mailto:guna@cs.cmu.edu”

and what we need to do is to extract the string guna@cs.cmu.edu. We can then look for
the regex

/mailto: (.*?)”/

This matches the expression of the form mailto:guna@cs.cmu.edu”. The ? mark is there
is a “lazy” match indicating as soon as the first “ is matched, the regex ends. Without the
? sign, regex will continue to match and will find the last “ in the input. The matching
expression inside the parenthesis (.*?) is assigned the variable $1 and can be used to print
out the actual email address as follows. Here is the sample code that opens “guna.htm” ,
read each line and look for a match to find the email addresses in each line.

Copyright @ 2009 Ananda Gunawardena

open(IN, “guna.htm”);

while (<IN>){

 if ($_ =~ /mailto:(.*?)"/){

 print $1."\n";

 }

}

We note that $_ is a system variable that stores the current input and while (<IN>) can be
used to replace foreach $line (<IN>)

Exercise: Modify the code so that it extracts all http links from the webpage. Hint:
"http:\/\/.*?"

Other Examples of Regex in Perl

1. /[abc]|[123]/ --- matches a string that contains a character from [abc] or [123]
2. /\dguna/ --- matches a string that begins with a digit and followed by guna
3. /gu+n?a/ -- matches guna, gun, guuna, etc
4. $_ = “i like programming”; s/ +/_/; -- replaces consecutive spaces with _

character.
5. /g{3,8}/ -- matches 3 to 8 g’s
6. /g{2,}/ -- matches with strings with at least 2 g’s
7. /g{4}/ -- matches with strings with exactly 4 g’s

Exercises
1. Write a perl program that reads a list of n strings (from STDIN) into an array and

print a random string from the list (use srand; rand(@array))

2. Write a perl program that takes a html file name as a command line argument (use
$ARGV[0]) and returns any emails that starts with “mailto:” tag.

3. Write a perl program that starts with an array of size 1 and then doubles the size

of the array when user needs more space. Program will read numbers from
<STDIN> until the user types -999.

4. Write a perl program that reads a file of words and replaces all words in the file

with their upper case equivalent (hint: use tr/a-z/A-Z/)

5. Write a perl program that takes an html file and a keyword as command line
arguments ($ARGV[0], $ARGV[1]) and creates a new file that highlights each of
the keywords (eg: to highlight word “guna” replace “guna” with <span

style="background-color: Yellow">guna)

Copyright @ 2009 Ananda Gunawardena

Answers

1. Write a perl program that reads a list of n strings (from STDIN) into an array and
print a random string from the list (use srand; rand(@array))

Ans: @array;
 $i = 0;
 foreach $line (<STDIN>){
 $array[$i] = $line;
 $i++:
 }
 $rnum= rand();
 print “A random array is $array[$rnum%100]\n”;

