Lecture 07
Pointers, *, ** and ***

In this lecture

o Revisit pointer

o Pointer arithmetic

o Passing a pointer to a function
o ** the address of a *

o *** the address of a **

o Dealing with ***

o Further readings

o Exercises

Revisiting pointers

A pointer 1is an address in the memory. Once the address of
a memory location is provided to a function, a function can
make changes to the actual content of the 1location. For
example,

int x=10;
foo (&x);

where foo 1s defined as

void foo(int* ptr) {

(*ptr) ++;
}
Will actually increase the value of x by 1. Note that ptr
is dereferenced first, that 1is (*ptr) before Dbeing
incremented.

Question: What happens if “*ptr++ 1s written instead of
(*ptr)++ 72

Copyright @ 2009 Ananda Gunawardena

Pointer Arithmetic
A pointers can be added and subtracted. For example, if
ptrl and ptr2 are pointers (of the same type) then we can
define the following.

1. Ptrl + n defines the address of a location that is n
locations from the ptrl. For example, if ptrl is an
int*, then ptrl+n defines the address of ptrl[n]

2. ptr2 - n defines the address of a location that is n
locations before ptr2. For example, if ptr2 is a
char*, then ptr2-n defines the address of the nth
character from ptr2.

3. If ptrl and ptr2 are both 1int*’s then ptr2-ptrl
defines the number of integers between ptrl and ptr2

Exercise: Consider the following function.

int foo(char* s){
char* tmp=s;
while (*tmp++ != ‘\0’);
return (tmp-s);

}

What does it return?

Passing a pointer to a function

Passing a pointer to a function is very important thing to
understand. For example, we may pass the address of an
integer (int*) to a function so the integer can be accessed
(perhaps changed) inside the function. We can pass the
address of a char* (that is a char**) to a function, so
memory can be allocated for the string (char*) inside the
function. We can also pass the address of a char** (that is
a char***) to a function so that char** can be changed
inside the function.

Copyright @ 2009 Ananda Gunawardena

Example 1: This example shows how to pass the address of a
char* to assign a string to a location.

char* s = NULL; /* this does not allocate memory for the
string*/

allocate(&s, n); /*call the function to allocate memory of
n bytes for s*/

int allocate (char** ptr, int n){
if ((*ptr=malloc(n)) != NULL)
return 0;
return 1;

Example 2: This example shows how to pass the address of a
char** to assign an array of char*’s to a location.

char** s = NULL; /* this does not allocate memory for the
array of strings */

allocate(&s, n); /*call the function to allocate memory of
for an array of char*’s */

int allocate (char*** ptr, int n){
if ((*ptr=malloc (n*sizeof (char*))) != NULL)
return 0;
return 1;

}

Question: Why is that we have to pass a *** in above case?

Example 3: This example shows how to pass the address of a
char** to double the size of an array of length n.

char** s = NULL; /* this does not allocates memory for the
array of strings */

allocate(&s,n); /* allocate as defined in example 2. Now
this allocates an array of n char’*s */

doubleArray (&s, n); /*call the function to double the size
of the array */

Copyright @ 2009 Ananda Gunawardena

int doubleArray (char*** ptr, int n){
if ((*ptr=malloc (2*n*sizeof (char*))) != NULL)
return 0;
return 1;

}

Question: This doubles the array that was passed. But there
are problems. What are they?

More examples from previous notes

Example 1

Write a function that takes the name of a file (char*) that
contains 1ints, an array of 1ints and the address of a
variable count and reads the file into the array. Assume
that the array has enough space to hold the file. count
should be updated to the number of entries in the file.

Answer:

int foo(char* filename, int A[], int* countptr) {
FILE* fp=NULL;
int num=0;
if ((fp=fopen(filename,”r”)) != NULL) {
while (fscanf (fp,”%d”, &num)>0)
{ A[*countptr]= num;
*countptr += 1;
}

return 0;

}

else return 1;

Insert Discussion from lecture

Example 2
Consider the following declaration.

int** matrix;

Copyright @ 2009 Ananda Gunawardena

Write a function matrixAllocate that takes two integers, m
and n and allocate an m by n block of memory.

int matrixAllocate (int*** Mptr, int n, int m) {

*Mptr = (int**)malloc (m*sizeof (int~*));
int i=0;
for (i=0;i<m;i++)

(*Mptr) [1i] = malloc(n*sizeof (int));

insert Discussion from lecture

Example 3

Write a C function swap that takes the name of a 2D array,
num rows, num columns, and two values i and j and swap the
two rows i and j. All error checking must be done.

int swap(int M[m] [n], int I, int J){

}

Insert Discussion from lecture

Further Readings
See K & R sections 5.7-5.9

Exercises
[1] Write a function freeAll(char* A[],int n) that takes an

array of char*’s and delete all memory associated with A

[2] Learn more about wvalgrind, a tool to check memory
leaks. Type: man valgrind

Copyright @ 2009 Ananda Gunawardena

