Lecture 05
Pointers ctd..

Note: some notes here are the same as ones in lecture 04

1 Introduction

A pointer is an address in the memory. One of the unique
advantages of using C 1is that it provides direct access to
a memory location through its address. A variable declared
as int x has the address given by &x. & is a unary operator
that allows the programmer to access the address of a
single wvariable declared. The following simple program
shows you how to find the address of an allocated wvariable.

#include <stdio.h>

int main(int argc, char* argv|[]) {
int x = 10;
printf (“The address of %d is %x \n”, x, &x);
return O;

For example 1f a variable x has the address bf9b4bf4d that
means the first byte of the 4 bytes allocated for the
variable x is bf9b4dbf4.

Quiz: What are the addresses of the other 3 bytes?

An array variable defined as int A[3]; has an address of
the first location given by

printf (“The address of A is %x \n”, A);

Note that & is not used to find the address of the array.
That’s because the name of the array is in fact a pointer
to the array (or the address of the first element A[0] of
the array). The address of next element of array A is A+l.
However, the meaning of A+l depends on the type of A. For
example, 1if A 1s an array of chars, then A+l can be
obtained by adding 1 to the address of A. However, 1if A is
an array of ints, then A+1 must be obtained by adding 4
bytes to A as the array holds the type int.

Hence we have the following understanding of arrays.
A = &A[0], A+l = &AJ[l], .. etc..

Copyright @ 2008 Ananda Gunawardena



2 Dereferencing Pointers

Given the address of a variable, the address can be
dereferenced to find the actual content of that location.
For example, consider the following code

int x = 10;
printf (“%d \n”, *(&x));

The output of the code is equivalent to printing the wvalue
of x. Compiler will interpret *(&x) as the content stored
at 4 bytes starting at address of x. (why 4 bytes?)

3 Pointer Variables

We now know how to define standard variables of types char,
int, double etc. C also allow users to define variables of
type pointer (or address). A pointer or address variable to
an int is defined as:

int* ptr;

The * can be placed anywhere between int and ptr. Compiler
will consider ptr to be an address of a variable of int
type. Therefore any dereferencing of the ptr variable will
cause the program to look for 4 bytes of memory. Similarly
we can define double*, char*, long*, void* etc. Memory can
be viewed as an array of bytes and once a variable 1is
declared, the wvalue of the variable are stored in the
memory as follows.

int x = 0x2FFF

Suppose following is an array of bytes. Then x is stored
(little endian) as

| oo Joo J2f |ff

f£01 f£02 £f£03 ££04 £f£05 f£06 ££07 f£08 f£09 £f£0A

Note that array addresses are given above. We use simple
numbers to denote addresses although addresses are 32-bits
or 64-bits

Copyright @ 2008 Ananda Gunawardena



Now we can assign the address of a variable declared to a
pointer as follows.

int x = 0x2fff;
int* xptr = &x;

Dereferencing xptr will now give access to the value of the
variable. Dereferencing is done using the unary operator *.
For example the following line of code will print x using
its direct reference and its pointer reference.

printf (“The value of x is %d or %d\n”, x, *xptr);

4 Allocating Dynamic Memory

Java allocates memory with its “new” statement. But C does
not have a “new statement (C++ does) to allocate memory.
One of the ways C allocates dynamic memory is with the
malloc function. The malloc function prototype

”

void* malloc(size_t size)

Allows programmer to specify how much memory is needed for
the variable or data structure at run time. For example,

malloc(4) returns a pointer (or address) to a 32-bit block
of memory. So if we would like to allocate memory for 100
integers, we can write

int* A = (int*)malloc(100*sizeof(int));

Note that malloc returns void* and it is type casted to
int* to be type compatible. You can now consider A as a
dynamic array of ints and use A Jjust like an array. For
example,

for (i=0; i<100; i++)
A[i] = random();

will assign 100 random numbers to the array.
Equivalently we can write
for (i=0; i<100; i++)

* (A+i) = random();

Here the A+T refers to the address of Ali] and
dereferencing &A[i] gives the content of A[i]

Copyright @ 2008 Ananda Gunawardena



5 Reading Strings

A C string is an array of characters ending with a NULL
character “\0’. You can allocate static memory for a string
with

char s[50];

this will allocate 50 bytes for the string and the maximum
size of the string that can be stored in this array is 49.
However, this 1is not efficient when string size 1is a
variable (like in a dictionary). Therefore we can allocate
memory using malloc. So if you know the size of a string,
say n bytes, you can allocate memory using,

char* s = (char*)malloc(n+l);

You still need to copy the characters into S. So suppose we
read a string into a temp array as follows.

char tmp[50];
fscanf (stdin, “%s”, tmp);

and suppose we need to copy the string to a permanent
location. So we do the following.

char* name = malloc(strlen(tmp)+1);
strcpy (name, tmp);

6 Array of Pointers

C arrays can be of any type. We define array of ints,
chars, doubles etc. We can also define an array of pointers
as follows. Here is the code to define an array of n char
pointers.

char* A[n];
each cell in the array A[i] is a char* and so it can point
to a character. You should initialize all the pointers (or

char*) to NULL with

for (i=0; i<n; i++)
A[i] = NULL,

Copyright @ 2008 Ananda Gunawardena



Now if you would like to assign a string to each A[i] you
can do something like this.

A[i] = malloc(length of string + 1);

Again this only allocates memory for a string and you still
need to copy the characters into this string. So if you are

building a dynamic dictionary (n words) vyou need to
allocate memory for n char*’s and then allocate just the
right amount of memory for each string.

A 4

A 4

7 Functions that take pointers

Pointers or memory addresses can be passed to a function as
arguments. This may allow indirect manipulation of a memory
location. For example, 1if we want to write a swap function
that will swap two values, then we can do the following.

void intswap (int* ptrA, int* ptrB) {
int temp = *ptrA;

*ptrA = *ptrB;
*ptrB = temp;

To use this function in the main, we can write the code as
follows.

int A = 10, B = 56;

Copyright @ 2008 Ananda Gunawardena



intswap (&A, &B);

note that the addresses of the wvariables A and B are passed
into the intswap function and the function manipulates the
data at those addresses directly. This 1is equivalent to
passing values by “reference”. It 1is really passing the
values that are addresses instead of copies of variables.
However this can be dangerous since we are giving access to
the original values.

One way to avoid this situation is to provide only “read”
access to the data using a pointer. Consider the following
function.

void foo(const int* ptr) {

/* do something */

The function takes the address of an integer wvariable, but
is not allowed to change 1its content. It only has read
privileges.

printf (“%d”, *ptr) is legal
scanf (“$d”, ptr) is illegal

8 Functions that Return pointers

Pointers can be returned from functions. For example, you
can think of a function that allocates a block of memory
and pass a pointer to that memory back to the main program.
Consider the following generic function that returns a
block of memory.

void* allocate (short bytes) {

void* temp = malloc (bytes);
return temp;

The function can be used in the main as follows.

int* A = (int*)allocate(sizeof (int) *100);
char* S = (char*)allocate(sizeof (char) *n+l);

since the function returns a void* it can be allocated for

any pointer type, int*, double*, char* etc. However, you
need to take great care in using the array. You must be

Copyright @ 2008 Ananda Gunawardena



aware of the segmentation of the array (4 byte blocks for
int, 1 byte blocks for chars etc)

9 Introduction to Strings

Learning how to manipulate strings 1is quite important in
any programming language. In Java string 1is an object and
inherits all its object properties. However, in C string is
an object with no inherited properties (such as 1length).
First we will begin with the concept of a pointer or
address. We will discuss in detail what pointers mean
shortly, but for now we want to start with a definition as
follows.

char* s;

The above statement simply indicates that s is a pointer to
(or address of) a character. A String is simply defined as
an array of characters and s 1s the address of the first
character (byte) of the string. In C, a string is just an
array of characters that does not have any inherited
properties. A wvalid C string ends with the null character
*\0’ [slash zero]. Therefore the amount of memory required
for a C string is 1 + length of the actual string. Failure
to make sure that a string ends with ‘\0’ may result in
unpredictable behavior in your code. Please note that some
IO library functions automatically add a null character to
the end of each string.

10 Initializing a String
A constant string s can be simply initialized as

char* s = “guna\0”;

However no memory is allocated for s in the stack. If we
try to write to s, then it may cause a segmentation fault
since memory has not been allocated explicitly.

For example,

fscanf (stdin, ”%s”,s); would cause a problem

If we need to read into a memory location, it is important
to allocate memory first and then copy the string to the
location. To allocate a block of memory to hold a string,
we use the malloc function from <stdlib.h>. To read more
about malloc type:

$ man malloc

Copyright @ 2008 Ananda Gunawardena



The malloc(int n) returns a pointer to (or an address of) a
block of n bytes. Note that a string with n characters
requires n+l bytes (n for the string AND 1 byte to store
the “\0’ character). Therefore, to store the input string
“guna’”, we would require 5 characters. The following code
allocates 5 characters to store the string “guna” + “\0’.

char *S = malloc(5*sizeof (char));
strepy (S, “guna”) ;

It is important to note that malloc allocates memory inside
what 1s called the “dynamic heap” and unless memory 1is
explicitly freed using free function (we will discuss this later. A
very important topic), the malloced block stays even after leaving
the scope of the code.

Alternatively we can also write

char s[5];
strepy (s, “guna”) ;

In this case, 5 bytes is allocated from the run time stack
and s no longer available once it 1is out of scope of the
variable s.

11 Reading a String from a file Stream
We can create a file stream using an input file as follows:

FILE* fp = fopen(“myfile.txt”,”r"”);

The file is now open for “r” only and fp (FILE* or FILE
pointer) can be used to read input from the file. To read
from a file we can use fscanf. You can find more about
fscanf by typing man fscanf at the unix prompt:

% man fscanf

NAME
scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf - input format con-
version

SYNOPSIS
#include <stdio.h>
int scanf (const char *format, ...);
int fscanf (FILE *stream, const char *format, ...);
int sscanf (const char *str, const char *format, ...);

#include <stdarg.h>

int wvscanf (const char *format, va_list ap);
int wvsscanf (const char *str, const char *format, va_list ap);

Copyright @ 2008 Ananda Gunawardena



int vfscanf (FILE *stream, const char *format, va_list ap);

DESCRIPTION

The scanf family of functions scans input according to a format as
described below. This format may contain conversion specifiers; the
results from such conversions, if any, are stored through the
pointer arguments. The scanf function reads input from the standard
input stream stdin, fscanf reads input from the stream pointer
stream, and sscanf reads its input from the character string pointed
to by str.

As an example, to read data from stdin,

char s[10];
fscanf (stdin, “%s”, s);

Reading a string using fscanf is somewhat dangerous. It is
possible that the input you enter may be longer than the
memory allocated by the character array. For example, if
you type something more than 9 characters 1in the above
example, the program may segfault as enough memory have not
been allocated for the string s. Consider program 3.1
below. Type the program and see what happens if you enter
something significantly longer than 10. The behavior of the
program is completely unpredictable.

/* Program 3.1 */

#include <stdio.h>

int main(int argc, char* argv[]) {
char S[107;

fscanf (stdin, "%s", S) ;

printf ("The input is %s \n", S);

return (EXIT_SUCCESS) ;

You need to be careful about managing memory for strings.
This 1is especially true 1if vyou are reading strings of
variable length and the size of the memory cannot be fixed
in advance. One possible way to safely read strings is to
use fgets function.

char *fgets(char *s, int size, FILE *stream);

fgets () reads in at most one less than size characters from stream and stores them 1into
the buffer pointed to by s. Reading stops after an EOF or a newline. If a newline is
read, it 1is stored into the buffer. A '\0' is stored after the last character in the
buffer.

There is also another version, gets as follows
char *gets(char *s);

Copyright @ 2008 Ananda Gunawardena



However, DO NOT use gets since we do not know how many
characters will be read from the stdin.

Warning: Never use gets().Because it 1is Impossible to tell
without knowing the data in advance how many characters

gets () will read, and because gets() will continue to
store characters past the end of the buffer, it 1is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead. [Source: UNIX
Manual]

Before using fgets we need to make sure a buffer has been
allocated to read in the string. For example

char buffer[50];
fgets (buffer, 40, stdin);

will read 39 characters into the buffer
(max buffer size 50).

12 Writing a String

If a string is properly read into a character array called
buffer, then we can write the string to an output stream
U.Sil’lg fprintf as follows. (find out more about fprintf using man fprintf )

fprintf (stdout, "%$s”,buffer);

or use formatting such as

fprintf (stdout, "%$20s” ,buffer); /*uses 20 spaces for string*/
Another useful function for string output is sprintf. This
is particularly useful if you need to construct a string
out of fixed and variable lengths, integers, floating
points numbers etc. For example you can think of a CMU
student course record in the format

S07, gunadean, Guna, Dean, SCS,CSs,2,L,4,15111 ,1 ,,

Given the values of individual fields this can be created
using sprintf. The prototype for sprintf is

int sprintf (char *str, const char *format, ...);

where 3 dots as the last argument indicates a wvariable
length argument list(we will learn how to write such

Copyright @ 2008 Ananda Gunawardena



functions later in the course). An example of how to use
sprintf is given below in program 3.2.

/* Program 3.2 */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
char buffer[256];
sprintf (buffer,"%s/%$s%d.c",
"/afs/andrew.cmu.edu", "myfile", 34);
printf ("$s\n",buffer);
return (EXIT_SUCCESS) ;

The output produced by the above code is a string:

“/afs/andrew.cmu.edu/myfile34.c”

Some other library functions that can be used for string

output are:

int puts(char* s);
int fputs(char *s, FILE* outfile);

13 Passing a String(s) to a function

A string or an array of strings can be passed as
argument to a function. Suppose for example we have
character buffer we need to pass to a function.

char buffer[50];

Also assume that we have a function foo as follows:
void foo(char A[] , int length) {..}

We can then pass buffer into foo as follows:
foo (buffer,n) ; /* n is the length of the buffer */

an
a

Passing the address of the buffer allows direct

manipulation of the content at the buffer location

Suppose that foo’s job is to read a string of length n into

buffer from stdin. Then it can be defined as
void foo(char[] s, int n){

fgets(s,n,stdin);
}

Copyright @ 2008 Ananda Gunawardena



14 Returning a String from a function
A string or the address of a string can be returned from a
function. Consider the following foo function.

char* foo () {
char* s;
s = malloc(n);
return s;

The function allocates memory for a string, and returns its
address back to main.

15 Swapping Two Strings
Suppose we need to swap two strings. A simple swapstring
function can be written as follows.

void swapstrings(char A[], char B[]){

char tmp[10];

strcpy (tmp,4);

strcpy (A, B);

strcpy (B, tmp) ;
}
Note that it is 1important to do string copy, instead of
just assigning addresses of strings that would only result
in a local change. Here is a wrongswapstrings.

void wrongswapstrings (char A[], char B[]){
char tmp[10];

tmp = A;
A = B;
B = tmp;
}
Caution

scanf (“%$s” ,buffer) and gets()

These functions are vulnerable to buffer overflows and may
pose some security problems. Never use them in your
programs. You can use fgets instead.

Unlike java C does not come with a extensive API for string
operations. However, C library, <string.h> provides a
decent collection of functions that can be used to
accomplish any task. You can find more about <string.h> by

typing:

Copyright @ 2008 Ananda Gunawardena



% man string.h

NAME

string.h - string operations
SYNOPSIS

#include <string.h>
DESCRIPTION

Some of the functionality described on this reference page extends
the ISO C standard. Applications shall define the appropriate fea-
ture test macro (see the System Interfaces volume of
IEEE Std 1003.1-2001, Section 2.2, The Compilation Environment) to
enable the visibility of these symbols in this header.

Copyright @ 2008 Ananda Gunawardena



16 String.h methods
C strings are

supported Dby

the string.h library. The

following functions are available.

Copying

void *memcpy(void *dest, const void *src,
size_t n);

The memcpy() function copies n bytes from
memory area src to memory area dest. The
memory areas may not overlap.

void *memmove(void *dest, const void * src,
size_t n);

The memmove() function copies n bytes from
memory area src to memory area dest. The
memory areas may overlap.

char *strcpy(char *dest, const char *src);

The strcpy() function copies the string pointed
to by src (including the terminating "\O'
character) to the array pointed to by dest. The
strings may not overlap, and the destination
string dest must be large enough to receive the

copy.

char *strncpy(char *dest, const char *src,
size_t n);

The strncpy() function is similar, except that
not more than n bytes of src are copied.
Thus, if there is no null byte among the first n
bytes of src, the result will not be null-
terminated.

Concatenation

char *strcat(char *dest, const char *src);

The strcat() function appends the src string to
the dest string over-writing the "\O' character at
the end of dest, and then adds a terminating
\O' character. The strings may not overlap,
and the dest string must have enough space for
the result.

char *strncat(char *dest, const char *src, size_t
n);

The strncat() function is similar, except that
only the first n characters of src are appended
to dest.

Comparison

int memcmp(const void *s1, const void *s2,
size_t n);

The memcmp() function compares the first n
bytes of the memory areas s1 and s2. It returns
an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than,
to match, or be greater than s2.

int strcmp(const char *s1, const char *s2);

The stremp() function compares the two strings
sl and s2. It returns an integer less than, equal
to, or greater than zero if sl is found,
respectively, to be less than, to match, or be
greater than s2.

int strncmp(const char *sl, const char *s2,
size_t n);

The strncmp() function is similar, except it
only compares the first (at most) n characters
of s1 and s2.

Copyright @ 2008 Ananda Gunawardena




Searching

char *strchr(const char *s, int c);

char *strrchr(const char *s, int c);

The strchr() function returns a pointer to the
first occurrence of the character c in the string
S.

The strrchr() function returns a pointer to the
last occurrence of the character c in the string s.

char *strtok(char *s, const char *delim);

The strtok() function can be used to parse the
string s into tokens. The first call to strtok()
should have s as its first argument. Subsequent
calls should have the first argument set to
NULL. Each call returns a pointer to the next
token, or NULL when no more tokens are
found.

char *strstr(const char *haystack, const char
*needle);

The strstr() function finds the first occurrence
of the substring needle in the string haystack.
The terminating "\O' characters are not
compared.

Other

void *memset(void *s, int ¢, size_t n);

The memset() function fills the first n bytes
of the memory area pointed to by s with the
constant byte c.

size_t strlen(const char *s);

The strlen() function calculates the length
of the string s, not including the terminating "\0'
character.

void *memchr(const void *s, int c, size_t n);

The memchr() function scans the first n
bytes of the memory area pointed to by s for
the character c. The first byte to match ¢
(interpreted as an unsigned character) stops the
operation.

Source: man unix

17 Tokenizing a String
String tokenization is
applications. For example,
a comma separated file

a very
we may have to extract data from
(CSV) .
extract tokens separated by comma delimiter.
be tokenized according to a delimiter.

useful operation in many
case we need to
A String can

let us

In this

For example,

assume we need to tokenize string S and the delimiter is

the blank.
string into tokens.

char* tk =
do {

strtok(S,” “);
printf (“%s\n”, tk);

} while ((tk=strtok (NULL,” “))

The following code can be used to tokenize the

!= NULL);

Copyright @ 2008 Ananda Gunawardena




Note that the first call to the strtok uses the original
string S and the subsequent calls we are passing NULL. When
there are no more tokens. Strtok returns NULL and the while
loop ends.

Exercises
3.1. A typical entry on CMU student records looks like this

S07,gunadean,Guna,Dean,SCS,CS,2,L,4,15111 ,1,,

The course data file is a file where each line contains the following information: semester, computer id,
student's last name, student's first name, college, department, class, grade option, gpa scale, course and
section. Write a function that takes a typical entry as a string and break down its fields into appropriate
data types. Output a file containing just the Andrew ID’s

3.2 What is wrong with the following code?
{char *s1 = "Hello, "; char *s2 = "world!"; char *s3 = strcat(s1, s2);}

3.3 What happens with this code? Please explain
char* s ="guna\0";
char buffer[20];
printf("%s is of length %d\n",s, strlen(s));
strcpy(s, buffer); // strcpy(dest,source)

3.4 Why is this function is bad? Find all problems you can think of.
char* badfunction(int n){
char A[n];
strncpy(A,”ghfhhfhhhfhhfdfasfff’,n);
return A;

}

3.5 Explain why calling this function would not swap two
integers A and B.

void intswap(int x, int y){
inttemp =x;
X=Yy;
y = temp;

}

int main(){
int A=10, B=20;
intswap(A,B);

}

3.6 Explain why calling this function would not swap two strings A and B.

Copyright @ 2008 Ananda Gunawardena



void stringswap(char x[], char y[1}{
char temp[10] = x;
X=y;
y = temp;

}

int main(){
char A[10]="guna\0”, B[10]="me\0";
stringswap(A,B);

}

3.7 What is the output of the following. If there are errors please state the error type.

void Question9() {
char *string, *x;
string = (char *)malloc(20*sizeof(char));
strcpy(string, "Hello World.");
x=string;
for(; *x 1="\0"; x++) {
printf("%c", *x);
}
printf("\n");
}

Copyright @ 2008 Ananda Gunawardena



