
Copyright @ 2008 Ananda Gunawardena

Lecture 05
Pointers ctd..

Note: some notes here are the same as ones in lecture 04

1 Introduction
A pointer is an address in the memory. One of the unique

advantages of using C is that it provides direct access to

a memory location through its address. A variable declared

as int x has the address given by &x. & is a unary operator

that allows the programmer to access the address of a

single variable declared. The following simple program

shows you how to find the address of an allocated variable.

#include <stdio.h>

int main(int argc, char* argv[]){

 int x = 10;

 printf(“The address of %d is %x \n”, x, &x);

 return 0;

}

For example if a variable x has the address bf9b4bf4 that

means the first byte of the 4 bytes allocated for the

variable x is bf9b4bf4.

Quiz: What are the addresses of the other 3 bytes?

An array variable defined as int A[3]; has an address of

the first location given by

printf(“The address of A is %x \n”, A);

Note that & is not used to find the address of the array.

That’s because the name of the array is in fact a pointer

to the array (or the address of the first element A[0] of

the array). The address of next element of array A is A+1.

However, the meaning of A+1 depends on the type of A. For

example, if A is an array of chars, then A+1 can be

obtained by adding 1 to the address of A. However, if A is

an array of ints, then A+1 must be obtained by adding 4

bytes to A as the array holds the type int.

Hence we have the following understanding of arrays.

A = &A[0], A+1 = &A[1], … etc..

Copyright @ 2008 Ananda Gunawardena

2 Dereferencing Pointers
Given the address of a variable, the address can be

dereferenced to find the actual content of that location.

For example, consider the following code

int x = 10;

printf(“%d \n”, *(&x));

The output of the code is equivalent to printing the value

of x. Compiler will interpret *(&x) as the content stored

at 4 bytes starting at address of x. (why 4 bytes?)

3 Pointer Variables
We now know how to define standard variables of types char,

int, double etc. C also allow users to define variables of

type pointer(or address). A pointer or address variable to

an int is defined as:

int* ptr;

The * can be placed anywhere between int and ptr. Compiler

will consider ptr to be an address of a variable of int

type. Therefore any dereferencing of the ptr variable will

cause the program to look for 4 bytes of memory. Similarly

we can define double*, char*, long*, void* etc. Memory can

be viewed as an array of bytes and once a variable is

declared, the value of the variable are stored in the

memory as follows.

int x = 0x2FFF

Suppose following is an array of bytes. Then x is stored

(little endian) as

 0 0 0 0 2 f f f
ff01 ff02 ff03 ff04 ff05 ff06 ff07 ff08 ff09 ff0A

Note that array addresses are given above. We use simple

numbers to denote addresses although addresses are 32-bits

or 64-bits

Copyright @ 2008 Ananda Gunawardena

Now we can assign the address of a variable declared to a

pointer as follows.

int x = 0x2fff;

int* xptr = &x;

Dereferencing xptr will now give access to the value of the

variable. Dereferencing is done using the unary operator *.

For example the following line of code will print x using

its direct reference and its pointer reference.

printf(“The value of x is %d or %d\n”, x, *xptr);

4 Allocating Dynamic Memory
Java allocates memory with its “new” statement. But C does

not have a “new” statement (C++ does) to allocate memory.

One of the ways C allocates dynamic memory is with the

malloc function. The malloc function prototype

void* malloc(size_t size)

Allows programmer to specify how much memory is needed for

the variable or data structure at run time. For example,

malloc(4) returns a pointer (or address) to a 32-bit block

of memory. So if we would like to allocate memory for 100

integers, we can write

int* A = (int*)malloc(100*sizeof(int));

Note that malloc returns void* and it is type casted to

int* to be type compatible. You can now consider A as a

dynamic array of ints and use A just like an array. For

example,

for (i=0; i<100; i++)

 A[i] = random();

will assign 100 random numbers to the array.

Equivalently we can write

for (i=0; i<100; i++)

 *(A+i) = random();

Here the A+I refers to the address of A[i] and

dereferencing &A[i] gives the content of A[i]

Copyright @ 2008 Ananda Gunawardena

5 Reading Strings
A C string is an array of characters ending with a NULL

character ‘\0’. You can allocate static memory for a string

with

char s[50];

this will allocate 50 bytes for the string and the maximum

size of the string that can be stored in this array is 49.

However, this is not efficient when string size is a

variable (like in a dictionary). Therefore we can allocate

memory using malloc. So if you know the size of a string,

say n bytes, you can allocate memory using,

char* s = (char*)malloc(n+1);

You still need to copy the characters into S. So suppose we

read a string into a temp array as follows.

char tmp[50];

fscanf(stdin, “%s”, tmp);

and suppose we need to copy the string to a permanent

location. So we do the following.

char* name = malloc(strlen(tmp)+1);

strcpy(name, tmp);

6 Array of Pointers
C arrays can be of any type. We define array of ints,

chars, doubles etc. We can also define an array of pointers

as follows. Here is the code to define an array of n char

pointers.

char* A[n];

each cell in the array A[i] is a char* and so it can point

to a character. You should initialize all the pointers (or

char*) to NULL with

for (i=0; i<n; i++)

 A[i] = NULL;

Copyright @ 2008 Ananda Gunawardena

Now if you would like to assign a string to each A[i] you

can do something like this.

A[i] = malloc(length_of_string + 1);

Again this only allocates memory for a string and you still

need to copy the characters into this string. So if you are

building a dynamic dictionary (n words) you need to

allocate memory for n char*’s and then allocate just the

right amount of memory for each string.

7 Functions that take pointers
Pointers or memory addresses can be passed to a function as

arguments. This may allow indirect manipulation of a memory

location. For example, if we want to write a swap function

that will swap two values, then we can do the following.

void intswap(int* ptrA, int* ptrB){

 int temp = *ptrA;

 *ptrA = *ptrB;

 *ptrB = temp;

}

To use this function in the main, we can write the code as

follows.

int A = 10, B = 56;

Copyright @ 2008 Ananda Gunawardena

intswap(&A, &B);

note that the addresses of the variables A and B are passed

into the intswap function and the function manipulates the

data at those addresses directly. This is equivalent to

passing values by “reference”. It is really passing the

values that are addresses instead of copies of variables.

However this can be dangerous since we are giving access to

the original values.

One way to avoid this situation is to provide only “read”

access to the data using a pointer. Consider the following

function.

void foo(const int* ptr){

 /* do something */

}

The function takes the address of an integer variable, but

is not allowed to change its content. It only has read

privileges.

printf(“%d”, *ptr) is legal

scanf(“%d”, ptr) is illegal

8 Functions that Return pointers
Pointers can be returned from functions. For example, you

can think of a function that allocates a block of memory

and pass a pointer to that memory back to the main program.

Consider the following generic function that returns a

block of memory.

void* allocate(short bytes){

 void* temp = malloc(bytes);

 return temp;

}

The function can be used in the main as follows.

int* A = (int*)allocate(sizeof(int)*100);

char* S = (char*)allocate(sizeof(char)*n+1);

since the function returns a void* it can be allocated for

any pointer type, int*, double*, char* etc. However, you

need to take great care in using the array. You must be

Copyright @ 2008 Ananda Gunawardena

aware of the segmentation of the array (4 byte blocks for

int, 1 byte blocks for chars etc)

9 Introduction to Strings
Learning how to manipulate strings is quite important in

any programming language. In Java string is an object and

inherits all its object properties. However, in C string is

an object with no inherited properties (such as length).

First we will begin with the concept of a pointer or

address. We will discuss in detail what pointers mean

shortly, but for now we want to start with a definition as

follows.

char* s;

The above statement simply indicates that s is a pointer to

(or address of) a character. A String is simply defined as

an array of characters and s is the address of the first

character (byte) of the string. In C, a string is just an

array of characters that does not have any inherited

properties. A valid C string ends with the null character

‘\0’ [slash zero]. Therefore the amount of memory required

for a C string is 1 + length of the actual string. Failure

to make sure that a string ends with ‘\0’ may result in

unpredictable behavior in your code. Please note that some

IO library functions automatically add a null character to

the end of each string.

10 Initializing a String
A constant string s can be simply initialized as

char* s = “guna\0”;

However no memory is allocated for s in the stack. If we

try to write to s, then it may cause a segmentation fault

since memory has not been allocated explicitly.

For example,

fscanf(stdin,”%s”,s); would cause a problem

If we need to read into a memory location, it is important

to allocate memory first and then copy the string to the

location. To allocate a block of memory to hold a string,

we use the malloc function from <stdlib.h>. To read more

about malloc type:

% man malloc

Copyright @ 2008 Ananda Gunawardena

The malloc(int n) returns a pointer to (or an address of) a

block of n bytes. Note that a string with n characters

requires n+1 bytes (n for the string AND 1 byte to store

the ‘\0’ character). Therefore, to store the input string

“guna”, we would require 5 characters. The following code

allocates 5 characters to store the string “guna” + ‘\0’.

char *S = malloc(5*sizeof(char));

strcpy(S,”guna”);

It is important to note that malloc allocates memory inside

what is called the “dynamic heap” and unless memory is

explicitly freed using free function (we will discuss this later. A

very important topic), the malloced block stays even after leaving

the scope of the code.

Alternatively we can also write

char s[5];

strcpy(s,”guna”);

In this case, 5 bytes is allocated from the run time stack

and s no longer available once it is out of scope of the

variable s.

11 Reading a String from a file Stream
We can create a file stream using an input file as follows:

FILE* fp = fopen(“myfile.txt”,”r”);

The file is now open for “r” only and fp (FILE* or FILE

pointer) can be used to read input from the file. To read

from a file we can use fscanf. You can find more about

fscanf by typing man fscanf at the unix prompt:

% man fscanf

NAME

 scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf - input format con-

 version

SYNOPSIS

 #include <stdio.h>

 int scanf(const char *format, ...);

 int fscanf(FILE *stream, const char *format, ...);

 int sscanf(const char *str, const char *format, ...);

 #include <stdarg.h>

 int vscanf(const char *format, va_list ap);

 int vsscanf(const char *str, const char *format, va_list ap);

Copyright @ 2008 Ananda Gunawardena

 int vfscanf(FILE *stream, const char *format, va_list ap);

DESCRIPTION

 The scanf family of functions scans input according to a format as

 described below. This format may contain conversion specifiers; the

 results from such conversions, if any, are stored through the

 pointer arguments. The scanf function reads input from the standard

 input stream stdin, fscanf reads input from the stream pointer

 stream, and sscanf reads its input from the character string pointed

 to by str.

As an example, to read data from stdin,

char s[10];

fscanf(stdin,“%s”,s);

Reading a string using fscanf is somewhat dangerous. It is

possible that the input you enter may be longer than the

memory allocated by the character array. For example, if

you type something more than 9 characters in the above

example, the program may segfault as enough memory have not

been allocated for the string s. Consider program 3.1

below. Type the program and see what happens if you enter

something significantly longer than 10. The behavior of the

program is completely unpredictable.

/* Program 3.1 */

#include <stdio.h>

int main(int argc, char* argv[]){

 char S[10];

 fscanf(stdin,"%s",S);

 printf("The input is %s \n", S);

 return (EXIT_SUCCESS);

}

You need to be careful about managing memory for strings.

This is especially true if you are reading strings of

variable length and the size of the memory cannot be fixed

in advance. One possible way to safely read strings is to

use fgets function.

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream and stores them into

the buffer pointed to by s. Reading stops after an EOF or a newline. If a newline is

read, it is stored into the buffer. A '\0' is stored after the last character in the

buffer.

There is also another version, gets as follows

char *gets(char *s);

Copyright @ 2008 Ananda Gunawardena

However, DO NOT use gets since we do not know how many

characters will be read from the stdin.

Warning: Never use gets().Because it is impossible to tell

without knowing the data in advance how many characters

gets() will read, and because gets() will continue to

store characters past the end of the buffer, it is

extremely dangerous to use. It has been used to break

computer security. Use fgets() instead. [Source: UNIX

Manual]

Before using fgets we need to make sure a buffer has been

allocated to read in the string. For example

char buffer[50];

fgets(buffer, 40, stdin);

will read 39 characters into the buffer

(max buffer size 50).

12 Writing a String
If a string is properly read into a character array called

buffer, then we can write the string to an output stream

using fprintf as follows. (find out more about fprintf using man fprintf)

fprintf(stdout,”%s”,buffer);

or use formatting such as

fprintf(stdout,”%20s”,buffer); /*uses 20 spaces for string*/

Another useful function for string output is sprintf. This

is particularly useful if you need to construct a string

out of fixed and variable lengths, integers, floating

points numbers etc. For example you can think of a CMU

student course record in the format

S07,gunadean,Guna,Dean,SCS,CS,2,L,4,15111 ,1 ,,

Given the values of individual fields this can be created

using sprintf. The prototype for sprintf is

int sprintf(char *str, const char *format, ...);

where 3 dots as the last argument indicates a variable

length argument list(we will learn how to write such

Copyright @ 2008 Ananda Gunawardena

functions later in the course). An example of how to use

sprintf is given below in program 3.2.

/* Program 3.2 */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]){

 char buffer[256];

 sprintf(buffer,"%s/%s%d.c",

 "/afs/andrew.cmu.edu", "myfile", 34);

 printf("%s\n",buffer);

 return (EXIT_SUCCESS);

}

The output produced by the above code is a string:

“/afs/andrew.cmu.edu/myfile34.c”

Some other library functions that can be used for string

output are:

int puts(char* s);

int fputs(char *s, FILE* outfile);

13 Passing a String(s) to a function
A string or an array of strings can be passed as an

argument to a function. Suppose for example we have a

character buffer we need to pass to a function.

char buffer[50];

Also assume that we have a function foo as follows:

void foo(char A[] , int length){…}

We can then pass buffer into foo as follows:

foo(buffer,n); /* n is the length of the buffer */

Passing the address of the buffer allows direct

manipulation of the content at the buffer location

Suppose that foo’s job is to read a string of length n into

buffer from stdin. Then it can be defined as

void foo(char[] s, int n){

 fgets(s,n,stdin);

}

Copyright @ 2008 Ananda Gunawardena

14 Returning a String from a function
A string or the address of a string can be returned from a

function. Consider the following foo function.

char* foo(){

 char* s;

 s = malloc(n);

 return s;

}

The function allocates memory for a string, and returns its

address back to main.

15 Swapping Two Strings
Suppose we need to swap two strings. A simple swapstring

function can be written as follows.

void swapstrings(char A[], char B[]){

 char tmp[10];

 strcpy(tmp,A);

 strcpy(A,B);

 strcpy(B,tmp);

}

Note that it is important to do string copy, instead of

just assigning addresses of strings that would only result

in a local change. Here is a wrongswapstrings.

void wrongswapstrings(char A[], char B[]){

 char tmp[10];

 tmp = A;

 A = B;

 B = tmp;

}

Caution

scanf(“%s”,buffer) and gets()
These functions are vulnerable to buffer overflows and may

pose some security problems. Never use them in your

programs. You can use fgets instead.

Unlike java C does not come with a extensive API for string

operations. However, C library, <string.h> provides a

decent collection of functions that can be used to

accomplish any task. You can find more about <string.h> by

typing:

Copyright @ 2008 Ananda Gunawardena

% man string.h

NAME
 string.h - string operations

SYNOPSIS

 #include <string.h>

DESCRIPTION
 Some of the functionality described on this reference page extends

 the ISO C standard. Applications shall define the appropriate fea-
 ture test macro (see the System Interfaces volume of

 IEEE Std 1003.1-2001, Section 2.2, The Compilation Environment) to
 enable the visibility of these symbols in this header.

Copyright @ 2008 Ananda Gunawardena

16 String.h methods
C strings are supported by the string.h library. The

following functions are available.

Copying

void *memcpy(void *dest, const void *src,

size_t n);

The memcpy() function copies n bytes from

memory area src to memory area dest. The

memory areas may not overlap.

void *memmove(void *dest, const void * src,

size_t n);

The memmove() function copies n bytes from

memory area src to memory area dest. The

memory areas may overlap.

char *strcpy(char *dest, const char *src);

The strcpy() function copies the string pointed

to by src (including the terminating '\0'

character) to the array pointed to by dest. The

strings may not overlap, and the destination

string dest must be large enough to receive the

copy.

char *strncpy(char *dest, const char *src,

size_t n);

The strncpy() function is similar, except that

not more than n bytes of src are copied.

Thus, if there is no null byte among the first n

bytes of src, the result will not be null-

terminated.

Concatenation

char *strcat(char *dest, const char *src);

The strcat() function appends the src string to

the dest string over-writing the '\0' character at

the end of dest, and then adds a terminating

'\0' character. The strings may not overlap,

and the dest string must have enough space for

the result.

char *strncat(char *dest, const char *src, size_t

n);

The strncat() function is similar, except that

only the first n characters of src are appended

to dest.

Comparison

int memcmp(const void *s1, const void *s2,

size_t n);

The memcmp() function compares the first n

bytes of the memory areas s1 and s2. It returns

an integer less than, equal to, or greater than

zero if s1 is found, respectively, to be less than,

to match, or be greater than s2.

int strcmp(const char *s1, const char *s2);

The strcmp() function compares the two strings

s1 and s2. It returns an integer less than, equal

to, or greater than zero if s1 is found,

respectively, to be less than, to match, or be

greater than s2.

int strncmp(const char *s1, const char *s2,

size_t n);

The strncmp() function is similar, except it

only compares the first (at most) n characters

of s1 and s2.

Copyright @ 2008 Ananda Gunawardena

Searching

char *strchr(const char *s, int c);

char *strrchr(const char *s, int c);

The strchr() function returns a pointer to the

first occurrence of the character c in the string

s.

The strrchr() function returns a pointer to the

last occurrence of the character c in the string s.

char *strtok(char *s, const char *delim);

The strtok() function can be used to parse the

string s into tokens. The first call to strtok()

should have s as its first argument. Subsequent

calls should have the first argument set to

NULL. Each call returns a pointer to the next

token, or NULL when no more tokens are

found.

char *strstr(const char *haystack, const char

*needle);

The strstr() function finds the first occurrence

of the substring needle in the string haystack.

The terminating '\0' characters are not

 compared.

Other

void *memset(void *s, int c, size_t n); The memset() function fills the first n bytes

of the memory area pointed to by s with the

constant byte c.

size_t strlen(const char *s); The strlen() function calculates the length

of the string s, not including the terminating '\0'

character.

void *memchr(const void *s, int c, size_t n);

The memchr() function scans the first n

bytes of the memory area pointed to by s for

the character c. The first byte to match c

(interpreted as an unsigned character) stops the

operation.

Source: man unix

17 Tokenizing a String
String tokenization is a very useful operation in many

applications. For example, we may have to extract data from

a comma separated file (CSV). In this case we need to

extract tokens separated by comma delimiter. A String can

be tokenized according to a delimiter. For example, let us

assume we need to tokenize string S and the delimiter is

the blank. The following code can be used to tokenize the

string into tokens.

char* tk = strtok(S,” “);

do {

 printf(“%s\n”, tk);

} while ((tk=strtok(NULL,” “)) != NULL);

Copyright @ 2008 Ananda Gunawardena

Note that the first call to the strtok uses the original

string S and the subsequent calls we are passing NULL. When

there are no more tokens. Strtok returns NULL and the while

loop ends.

Exercises
3.1. A typical entry on CMU student records looks like this

S07,gunadean,Guna,Dean,SCS,CS,2,L,4,15111 ,1 ,,

The course data file is a file where each line contains the following information: semester, computer id,

student's last name, student's first name, college, department, class, grade option, qpa scale, course and

section. Write a function that takes a typical entry as a string and break down its fields into appropriate

data types. Output a file containing just the Andrew ID’s

3.2 What is wrong with the following code?

 {char *s1 = "Hello, "; char *s2 = "world!"; char *s3 = strcat(s1, s2);}

3.3 What happens with this code? Please explain

 char* s = "guna\0";

char buffer[20];

printf("%s is of length %d\n",s, strlen(s));

strcpy(s, buffer); // strcpy(dest,source)

3.4 Why is this function is bad? Find all problems you can think of.

 char* badfunction(int n){

 char A[n];

 strncpy(A,”ghfhhfhhhfhhfdfasfff”,n);

 return A;

 }

3.5 Explain why calling this function would not swap two

 integers A and B.

 void intswap(int x, int y){

 int temp = x;

 x = y;

 y = temp;

 }

 int main(){

 int A=10, B=20;

 intswap(A,B);

 }

3.6 Explain why calling this function would not swap two strings A and B.

Copyright @ 2008 Ananda Gunawardena

 void stringswap(char x[], char y[]){

 char temp[10] = x;

 x = y;

 y = temp;

 }

 int main(){

 char A[10]=”guna\0”, B[10]=”me\0”;

 stringswap(A,B);

 }

3.7 What is the output of the following. If there are errors please state the error type.

void Question9() {

char *string, *x;

string = (char *)malloc(20*sizeof(char));

strcpy(string, "Hello World.");

x=string;

for(; *x != '\0'; x++) {

 printf("%c", *x);

}

printf("\n");

}

