
Copyright @ 2008 Ananda Gunawardena

Lecture 04

Introduction to pointers

A pointer is an address in the memory. One of the unique

advantages of using C is that it provides direct access to

a memory location through its address. A variable declared

as int x has the address given by &x. & is a unary operator

that allows the programmer to access the address of a

single variable declared. The following simple program

shows you how to find the address of an allocated variable.

#include <stdio.h>

int main(int argc, char* argv[]){

 int x = 10;

 printf(“The address of %d is %x \n”, x, &x);

 return 0;

}

For example if a variable x has the address bf9b4bf4 that

means the first byte of the 4 bytes allocated for the

variable x is bf9b4bf4.

Quiz: What are the addresses of the other 3 bytes?

An array variable defined as int A[3]; has an address of

the first location given by

printf(“The address of A is %x \n”, A);

Note that & is not used to find the address of the array.

That’s because the name of the array is in fact a pointer

to the array (or the address of the first element A[0] of

the array). The address of next element of array A is A+1.

However, the meaning of A+1 depends on the type of A. For

example, if A is an array of chars, then A+1 can be

obtained by adding 1 to the address of A. However, if A is

an array of ints, then A+1 must be obtained by adding 4

bytes to A as the array holds the type int.

Hence we have the following understanding of arrays.

A = &A[0], A+1 = &A[1], … etc..

Copyright @ 2008 Ananda Gunawardena

Dereferencing Pointers
Given the address of a variable, the address can be

dereferenced to find the actual content of that location.

For example, consider the following code

int x = 10;

printf(“%d \n”, *(&x));

The output of the code is equivalent to printing the value

of x. Compiler will interpret *(&x) as the content stored

at 4 bytes starting at address of x. (why 4 bytes?)

Pointer Variables
We now know how to define standard variables of types char,

int, double etc. C also allow users to define variables of

type pointer(or address). A pointer or address variable to

an int is defined as:

int* ptr;

The * can be placed anywhere between int and ptr. Compiler

will consider ptr to be an address of a variable of int

type. Therefore any dereferencing of the ptr variable will

cause the program to look for 4 bytes of memory. Similarly

we can define double*, char*, long*, void* etc. Memory can

be viewed as an array of bytes and once a variable is

declared, the value of the variable are stored in the

memory as follows.

int x = 0x2FFF

Suppose following is an array of bytes. Then x is stored

(little endian) as

 0 0 0 0 2 f f f
ff01 ff02 ff03 ff04 ff05 ff06 ff07 ff08 ff09 ff0A

Note that array addresses are given above. We use simple

numbers to denote addresses although addresses are 32-bits

or 64-bits

Now we can assign the address of a variable declared to a

pointer as follows.

int x = 0x2fff;

int* xptr = &x;

Copyright @ 2008 Ananda Gunawardena

Dereferencing xptr will now give access to the value of the

variable. Dereferencing is done using the unary operator *.

For example the following line of code will print x using

its direct reference and its pointer reference.

printf(“The value of x is %d or %d\n”, x, *xptr);

Allocating Dynamic Memory
Java allocates memory with its “new” statement. But C does

not have a “new” statement (C++ does) to allocate memory.

One of the ways C allocates dynamic memory is with the

malloc function. The malloc function prototype

void* malloc(size_t size)

Allows programmer to specify how much memory is needed for

the variable or data structure at run time. For example,

malloc(4) returns a pointer (or address) to a 32-bit block

of memory. So if we would like to allocate memory for 100

integers, we can write

int* A = (int*)malloc(100*sizeof(int));

Note that malloc returns void* and it is type casted to

int* to be type compatible. You can now consider A as a

dynamic array of ints and use A just like an array. For

example,

for (i=0; i<100; i++)

 A[i] = random();

will assign 100 random numbers to the array.

Equivalently we can write

for (i=0; i<100; i++)

 *(A+i) = random();

Here the A+I refers to the address of A[i] and

dereferencing &A[i] gives the content of A[i]

Copyright @ 2008 Ananda Gunawardena

Reading Strings
A C string is an array of characters ending with a NULL

character ‘\0’. You can allocate static memory for a string

with

char s[50];

this will allocate 50 bytes for the string and the maximum

size of the string that can be stored in this array is 49.

However, this is not efficient when string size is a

variable (like in a dictionary). Therefore we can allocate

memory using malloc. So if you know the size of a string,

say n bytes, you can allocate memory using,

char* s = (char*)malloc(n+1);

You still need to copy the characters into S. So suppose we

read a string into a temp array as follows.

char tmp[50];

fscanf(stdin, “%s”, tmp);

and suppose we need to copy the string to a permanent

location. So we do the following.

char* name = malloc(strlen(tmp)+1);

strcpy(name, tmp);

Array of Pointers
C arrays can be of any type. We define array of ints,

chars, doubles etc. We can also define an array of pointers

as follows. Here is the code to define an array of n char

pointers.

char* A[n];

each cell in the array A[i] is a char* and so it can point

to a character. You should initialize all the pointers (or

char*) to NULL with

for (i=0; i<n; i++)

 A[i] = NULL;

Now if you would like to assign a string to each A[i] you

can do something like this.

A[i] = malloc(length_of_string + 1);

Copyright @ 2008 Ananda Gunawardena

Again this only allocates memory for a string and you still

need to copy the characters into this string. So if you are

building a dynamic dictionary (n words) you need to

allocate memory for n char*’s and then allocate just the

right amount of memory for each string.

Functions that take pointers
Pointers or memory addresses can be passed to a function as

arguments. This may allow indirect manipulation of a memory

location. For example, if we want to write a swap function

that will swap two values, then we can do the following.

void intswap(int* ptrA, int* ptrB){

 int temp = *ptrA;

 *ptrA = *ptrB;

 *ptrB = temp;

}

To use this function in the main, we can write the code as

follows.

int A = 10, B = 56;

intswap(&A, &B);

note that the addresses of the variables A and B are passed

into the intswap function and the function manipulates the

data at those addresses directly. This is equivalent to

Copyright @ 2008 Ananda Gunawardena

passing values by “reference”. It is really passing the

values that are addresses instead of copies of variables.

However this can be dangerous since we are giving access to

the original values.

One way to avoid this situation is to provide only “read”

access to the data using a pointer. Consider the following

function.

void foo(const int* ptr){

 /* do something */

}

The function takes the address of an integer variable, but

is not allowed to change its content. It only has read

privileges.

printf(“%d”, *ptr) is legal

scanf(“%d”, ptr) is illegal

Functions that Return pointers
Pointers can be returned from functions. For example, you

can think of a function that allocates a block of memory

and pass a pointer to that memory back to the main program.

Consider the following generic function that returns a

block of memory.

void* allocate(short bytes){

 void* temp = malloc(bytes);

 return temp;

}

The function can be used in the main as follows.

int* A = (int*)allocate(sizeof(int)*100);

char* S = (char*)allocate(sizeof(char)*n+1);

since the function returns a void* it can be allocated for

any pointer type, int*, double*, char* etc. However, you

need to take great care in using the array. You must be

aware of the segmentation of the array (4 byte blocks for

int, 1 byte blocks for chars etc)

Copyright @ 2008 Ananda Gunawardena

Starting to think like a C programmer
We have spent quite a bit of time now talking about C

language. It is possible that so far your thinking was

based on your first “computer” language Java. You may have

been trying to think like a Java programmer and convert

that thought to C. Now it is time to think like a C

programmer. Being able to think directly in C will make you

a better C programmer. Here are 15 things to remember when

you start a C program from scratch.

1. include <stdio.h> in all your programs
2. Declare functions and variables before using them
3. increment and decrement with ++ and – operators.
4. Use x += 5 instead of x = x + 5
5. A string is an array of characters ending with a ‘\0”.

Don’t ever forget the null character.

6. Array of size n has indices from 0 to n-1. Although C
will allow you to access A[n] it is very dangerous.

7. A character can be represented by an integer (ASCII
value) and can be used as such.

8. The unary operator & produces an address
9. The unary operator * dereference a pointer
10. Arguments to functions are always passed by value. But

the argument can be an address of just a value

11. For efficiency, pointers can be passed to or return
from a function.

12. Logical false is zero and anything else is true
13. You can do things like for(;;) or while(i++) for

program efficiency and writability

14. Use /* .. */ instead of //
15. Always compile your program with –ansi flag

Copyright @ 2008 Ananda Gunawardena

Exercises
1. Write a function foo that takes a file name as a

string, and reads each string in the file, allocate

memory and create an array of strings (of multiple

lengths) and return the address of the array back to

the calling program. Assume the max size of the file

to be MAX_WORDS

2. What could be a possible error in the following code?

 int* foo(int n){

 int A[10], *x;

 Strcpy(A,”guna”);

 x = A;

 return x;

 }

3. What can be wrong with the following code?

 int A[10], i, *ptr;

 for (i=0;i<10;i++)

 ptr = A + i;

 printf(“%d “, *(ptr+1));

4. The C library string.h contains the function

strcpy(dest,src) that copies src string to a dest

string. Write a alternative version of the strcpy with

the following prototype. The function returns 0 if

successful and returns 1 if fails for some reason.

int mystrcpy(char* dest, const char* src){

}

Is it possible to check inside the function, whether

there is enough memory available in dest to copy src?

Justify your answer.

Copyright @ 2008 Ananda Gunawardena

ANSWERS

1. Write a function foo that takes a file name as a

string, and reads each string in the file, allocate

memory and create an array of strings (of multiple

lengths) and return the address of the array back to

the calling program. Assume the max size of the file

to be MAX_WORDS

Answer: char** foo(char* filename){

 char tmp[100];

 char* list[MAX_WORDS];

 int i = 0;

 FILE* fp = fopen(filename,”r”);

 while (fscanf(fp,”%s”,tmp)>0){

 list[i] = malloc(strlen(tmp)+1);

 strcpy(list[i++],tmp);

 }

 return list;

 }

2. What could be a possible error in the following code?

 int* foo(int n){

 int A[10], *x;

 Strcpy(A,”guna”);

 x = A;

 return x;

 }

ANSWER: A is a local allocation of memory, and when x is

returned A no longer exists. Therefore, any effort to

dereference the address returned by x could cause errors.

3. What can be wrong with the following code?

 int A[10], i, *ptr;

 for (i=0;i<10;i++)

 ptr = A + i;

 printf(“%d “, *(ptr+1));

Answer: After loop is executed the ptr points to the last

thing in the array (A[9]). Now *(ptr+1) tried to

dereference the content at A[10], something that does not

exists.

Copyright @ 2008 Ananda Gunawardena

4. The C library string.h contains the function

strcpy(dest,src) that copies src string to a dest

string. Write an alternative version of the strcpy

with the following prototype. The function returns 0

if successful and returns 1 if fails for some reason.

int mystrcpy(char* dest, const char* src){

 int i = 0;

 while (i<strlen(src) && src[i] != ‘\0’) {

 dest[i] = src[i++];

 dest[i] = ‘\0’;

 return 0;

}

Is it possible to check inside the function, whether

there is enough memory available in dest to copy src?

Justify your answer.

Answer: The passed argument dest is a copy of the

address of the memory available to dest. However, the

mystrcpy does not know anything about the max size

available to copy src. So obviously the code above is

dangerous since we could overwrite some memory not

allocated to us.

