Lecture 04
Introduction to pointers

A pointer is an address in the memory. One of the unique
advantages of using C is that it provides direct access to
a memory location through its address. A variable declared
as int x has the address given by &x. & is a unary operator
that allows the programmer to access the address of a
single wvariable declared. The following simple program
shows you how to find the address of an allocated variable.

#include <stdio.h>

int main(int argc, char* argv|[]) {
int x = 10;
printf (“The address of %d is %x \n”, x, &x);
return O;

For example 1f a variable x has the address bf9b4bf4 that
means the first byte of the 4 bytes allocated for the
variable x is bf9b4bf4.

Quiz: What are the addresses of the other 3 bytes?

An array variable defined as int A[3]; has an address of
the first location given by

printf (“The address of A is %x \n”, A);

Note that & is not used to find the address of the array.
That’s because the name of the array is in fact a pointer
to the array (or the address of the first element A[0] of
the array). The address of next element of array A is A+l.
However, the meaning of A+l depends on the type of A. For
example, 1if A 1s an array of chars, then A+l can be
obtained by adding 1 to the address of A. However, 1if A is
an array of ints, then A+l must be obtained by adding 4
bytes to A as the array holds the type int.

Hence we have the following understanding of arrays.
A = &A[0], A+l = &A[1l], .. etc..

Copyright @ 2008 Ananda Gunawardena

Dereferencing Pointers

Given the address of a variable, the address can be
dereferenced to find the actual content of that location.
For example, consider the following code

int x = 10;
printf (“%d \n”, *(&x));

The output of the code is equivalent to printing the wvalue
of x. Compiler will interpret *(&x) as the content stored
at 4 bytes starting at address of x. (why 4 bytes?)

Pointer Variables
We now know how to define standard variables of types char,
int, double etc. C also allow users to define variables of
type pointer (or address). A pointer or address variable to
an int is defined as:

int* ptr;

The * can be placed anywhere between int and ptr. Compiler
will consider ptr to be an address of a wvariable of int
type. Therefore any dereferencing of the ptr variable will
cause the program to look for 4 bytes of memory. Similarly
we can define double*, char*, long*, void* etc. Memory can
be viewed as an array of bytes and once a variable 1is
declared, the wvalue of the wvariable are stored 1in the
memory as follows.

int x = Ox2FFF

Suppose following 1is an array of bytes. Then x is stored
(little endian) as

\ loo oo |2 f [ff | \

f£01 ££02 ££03 ££04 ££05 ££06 ££07 ££08 £f£09 £f£f0A

Note that array addresses are given above. We use simple
numbers to denote addresses although addresses are 32-bits
or 64-bits

Now we can assign the address of a variable declared to a
pointer as follows.

int x = 0x2fff;
int* xptr = &x;

Copyright @ 2008 Ananda Gunawardena

Dereferencing xptr will now give access to the value of the
variable. Dereferencing is done using the unary operator *.
For example the following line of code will print x using
its direct reference and its pointer reference.

printf (“The value of x is %d or %d\n”, x, *xptr);

Allocating Dynamic Memory

Java allocates memory with its “new” statement. But C does
not have a “new statement (C++ does) to allocate memory.
One of the ways C allocates dynamic memory 1is with the
malloc function. The malloc function prototype

”

void* malloc(size_t size)

Allows programmer to specify how much memory is needed for
the variable or data structure at run time. For example,

malloc(4) returns a pointer (or address) to a 32-bit block
of memory. So if we would like to allocate memory for 100
integers, we can write

int* A = (int*)malloc(100*sizeof(int));

Note that malloc returns void* and it is type casted to
int* to be type compatible. You can now consider A as a
dynamic array of ints and use A Jjust like an array. For
example,

for (i=0; i<100; i++)
A[i] = random();

will assign 100 random numbers to the array.
Equivalently we can write
for (i=0; i<100; i++)

* (A+i) = random();

Here the A+T refers to the address of Ali] and
dereferencing &A[i1i] gives the content of A[i]

Copyright @ 2008 Ananda Gunawardena

Reading Strings

A C string is an array of characters ending with a NULL
character “\0’. You can allocate static memory for a string
with

char s[50];

this will allocate 50 bytes for the string and the maximum
size of the string that can be stored in this array is 49.
However, this 1is not efficient when string size 1is a
variable (like in a dictionary). Therefore we can allocate
memory using malloc. So if you know the size of a string,
say n bytes, you can allocate memory using,

char* s = (char*)malloc(n+l);

You still need to copy the characters into S. So suppose we
read a string into a temp array as follows.

char tmp[50];
fscanf (stdin, “%s”, tmp);

and suppose we need to copy the string to a permanent
location. So we do the following.

char* name = malloc(strlen(tmp)+1);
strcpy (name, tmp);

Array of Pointers

C arrays can be of any type. We define array of ints,
chars, doubles etc. We can also define an array of pointers
as follows. Here is the code to define an array of n char
pointers.

char* A[n];
each cell in the array A[i] is a char* and so it can point
to a character. You should initialize all the pointers (or

char*) to NULL with

for (i=0; i<n; i++)
A[i] = NULL,

Now if you would like to assign a string to each A[i] you
can do something like this.

A[i] = malloc(length of string + 1);

Copyright @ 2008 Ananda Gunawardena

Again this only allocates memory for a string and you still
need to copy the characters into this string. So if you are

building a dynamic dictionary (n words) vyou need to
allocate memory for n char*’s and then allocate just the
right amount of memory for each string.

A 4

A 4

Functions that take pointers

Pointers or memory addresses can be passed to a function as
arguments. This may allow indirect manipulation of a memory
location. For example, if we want to write a swap function
that will swap two values, then we can do the following.

void intswap (int* ptrA, int* ptrB) {
int temp = *ptrA;
*ptrA = *ptrB;
*ptrB = temp;

To use this function in the main, we can write the code as
follows.

int A = 10, B = 56;
intswap (&A, &B);

note that the addresses of the variables A and B are passed
into the intswap function and the function manipulates the
data at those addresses directly. This 1is equivalent to

Copyright @ 2008 Ananda Gunawardena

passing values by *“reference”. It 1is really passing the
values that are addresses instead of copies of wvariables.
However this can be dangerous since we are giving access to
the original wvalues.

One way to avoid this situation is to provide only “read”
access to the data using a pointer. Consider the following
function.

void foo(const int* ptr) {

/* do something */

The function takes the address of an integer wvariable, but
is not allowed to change its content. It only has read
privileges.

printf (“%$d”, *ptr) is legal
scanf (“"$d”, ptr) is illegal

Functions that Return pointers

Pointers can be returned from functions. For example, you
can think of a function that allocates a block of memory
and pass a pointer to that memory back to the main program.
Consider the following generic function that returns a
block of memory.

void* allocate (short bytes) {
void* temp = malloc (bytes);
return temp;

The function can be used in the main as follows.

int* A = (int*)allocate(sizeof (int) *100);
char* S = (char*)allocate (sizeof (char) *n+l);

since the function returns a void* it can be allocated for
any pointer type, int*, double*, char* etc. However, you
need to take great care in using the array. You must be
aware of the segmentation of the array (4 byte blocks for
int, 1 byte blocks for chars etc)

Copyright @ 2008 Ananda Gunawardena

Starting to think like a C programmer

We have spent quite a bit of time now talking about C
language. It 1s possible that so far your thinking was
based on your first “computer” language Java. You may have
been trying to think 1like a Java programmer and convert
that thought to C. Now it is time to think 1like a C
programmer. Being able to think directly in C will make you
a better C programmer. Here are 15 things to remember when
you start a C program from scratch.

include <stdio.h> in all your programs

Declare functions and variables before using them

increment and decrement with ++ and - operators.

Use x += 5 instead of x = x + 5

A string is an array of characters ending with a “\0”.

Don’t ever forget the null character.

6. Array of size n has indices from 0 to n-1. Although C
will allow you to access A[n] it is very dangerous.

7. A character can be represented by an integer (ASCII
value) and can be used as such.

8. The unary operator & produces an address

The unary operator * dereference a pointer

10.Arguments to functions are always passed by value. But
the argument can be an address of just a value

11.For efficiency, pointers can be passed to or return
from a function.

12.Logical false is zero and anything else is true

g w N

NeJ

13.You <can do things 1like for(;;) or while(i++) for
program efficiency and writability
14.Use /* .. */ instead of //

15.Always compile your program with —-ansi flag

Copyright @ 2008 Ananda Gunawardena

Exercises

1.

2.

Write a function foo that takes a file name as a
string, and reads each string in the file, allocate
memory and create an array of strings (of multiple
lengths) and return the address of the array back to
the calling program. Assume the max size of the file
to be MAX_WORDS

What could be a possible error in the following code?

int* foo(int n) {

3.

}

int A[10], *x;
Strcpy (A, "guna”) ;
x = A;

return x;

What can be wrong with the following code?

int A[10], i, *ptr;
for (i=0;i<10;i++)

ptr = A + i;

printf(“%d %, *(ptr+l));

The C library string.h contains the function
strcpy (dest, src) that copies src string to a dest
string. Write a alternative version of the strcpy with
the following prototype. The function returns 0 if
successful and returns 1 if fails for some reason.

int mystrcpy(char* dest, const char* src) {

Is it possible to check inside the function, whether
there is enough memory available in dest to copy src?
Justify your answer.

Copyright @ 2008 Ananda Gunawardena

ANSWERS

1. Write a function foo that takes a file name as a
string, and reads each string in the file, allocate
memory and create an array of strings (of multiple
lengths) and return the address of the array back to
the calling program. Assume the max size of the file
to be MAX_ WORDS

Answer: char** foo(char* filename) {

char tmp[100];

char* list [MAX WORDS];

int i = 0;

FILE* fp = fopen(filename, "r”);

while (fscanf (fp,”%s”,tmp)>0) {
list[i] = malloc(strlen (tmp)+1);
strecpy (list[i++], tmp);

}

return list;

}

2. What could be a possible error in the following code?

int* foo(int n) {
int A[10], *x;
Strcpy (A, “"guna”) ;
X = A;
return x;

}

ANSWER: A is a local allocation of memory, and when x is
returned A no longer exists. Therefore, any effort to
dereference the address returned by x could cause errors.

3. What can be wrong with the following code?

int A[10], i, *ptr;
for (i=0;i<10;i++)

ptr = A + i;
printf(“%d %, * (ptr+l));

Answer: After loop is executed the ptr points to the last
thing in the array (A[9]) . Now * (ptr+l) tried to
dereference the content at A[10], something that does not
exists.

Copyright @ 2008 Ananda Gunawardena

. The C library string.h contains the function
strcpy (dest,src) that copies src string to a dest
string. Write an alternative wversion of the strcpy
with the following prototype. The function returns 0
if successful and returns 1 if fails for some reason.

int mystrcpy (char* dest, const char* src) {
int i = 0;
while (i<strlen(src) && src[i] !'= *\0’) {
dest[i] = src[i++];
dest[i] = \0’;
return O;

Is it possible to check inside the function, whether
there is enough memory available in dest to copy src?
Justify your answer.

Answer: The passed argument dest is a copy of the
address of the memory available to dest. However, the
mystrcpy does not know anything about the max size
available to copy src. So obviously the code above is
dangerous since we could overwrite some memory not
allocated to us.

Copyright @ 2008 Ananda Gunawardena

