Lecture 03
I/0, Functions, Strings, Arrays

In this lecture
¢ Input and output (STDIN and STDOUT)
File I/0
Binary Files
Briefly
o Arraysin C
o Strings in C
o Functions in C
Additional Readings
Exercises

Input and Output

Input/output(l/0) is fundamental to any programming language. Most programming
languages provide built-in I/O routines or provide libraries that can be used to do I/0
operations. In C, I/O operations can be performed by using stdio.h. You are encouraged
to type at the Unix prompt:

>man stdio.h

To read about this standard buffered input/output routines.

(if you see : press space bar to go to next page. Type Q to quit man pages)

Files are treated as streams of data that can come from terminal or from an external
storage device such as tape or disk. Files can be treated as ASCIl or can be treated as
binary files. All bytes in an ASCII file are expected to be represented using a character in
ASCII table and it is possible to edit those files. For example any .txt file is an ASCII file. C
compiler provides three standard |0 references.

STDIN — refers to Standard input device (typically a keyboard)

STDOUT - defines standard output device (typically a terminal)

STDERR — defines a device where the errors are recorded.

There are two stdio.h functions that can be used for this processing data. fprintf is used
for formatted output while fscanf is used for formatted input.

Writing output to STDOUT
Let us look at fprintf first. This is a function with variable number of arguments. Here is
an example.

fprintf(STDIN, “This is a test %d %.4f %10.2f %c\n”,134,56.455, 3355.5346, 65);
The prototype of fprintf is: int fprintf(FILE* fp, char *S, argl, arg2, ...)

Where S typically called a format string that contains regular characters (eg: “This is ..”)
and specification of conversion of arguments. For example first specification %d in the

Copyright @ 2011 Ananda Gunawardena

example instructs the compiler to replace %d by the decimal representation of 134, the
first argument. The number of format specifications inside the format string must match
the number of arguments. Although the program will compile w/o the equal number of
matching arguments, the output can be erroneous.

The formatting statements such as %10.2f are used to format your output to 10 total
spaces (blanks in front) and 2 decimal places. A list of format characters can be found in
Table 7-1 on page 154 on K&R.

If you are interested in outputting the characters to terminal then you can use the
function: int putchar(int)

For example if you need to write the character ‘c’ to terminal then you may write:
putchar(‘c’) or putchar(99) where 99 is the ASCII value of character ‘c’. putchar returns
the ASCII value of the same character or EOF if an error occurs.

Reading input from STDIN

Function scanf can be used to read input from STDIN. For example, if you need to read
an integer from STDIN to integer variable x, then you can write; scanf(“%d”, &x);

Note that scanf requires a format statement (“%d”) and “address” of the variable that
input is read into. Each variable is given a location in the memory and &x indicates the
actual memory location for x. You can see this memory location by typing printf(“%x”,
&x); What you will see is a 32 bit address variable for x given as a hexadecimal(base-16)
number. Scanf stops when its exhaust the input string. Scanf returns the number of
successful matches. Basic scanf conversions can be found on Table 7-2 on page 158.

If you dealing with a stream of characters from keyboard you can use the function: int
getchar(void)

getchar returns the ASCll value of the next input character or EOF, a constant defined in
stdio.h Another function that may be of use is the sscanf. The prototype for sscanf is:
int sscanf(char*S,char* format, argl, arg2,...)

Where it scans the string S according to the format statement order of args. Blanks
within the format statement are ignored. It is important that arguments to scanf
statement are addresses of variables.

Reading “Characters” from stdin

You need to be extra careful about reading characters from stdin. If you just want to
read one character from the stdin (for example, to get a menu option) one problem may
be that the linefeed character (ASCII=10) may still be in the buffer waiting to be read.
Although you might think that you can flush the buffer using fflush, fflush(stdin) does
not work in some systems. One possibility is to write a dummy function

int flush(){
char ch;
fscanf(STDIN, “%c”, ch);

}

Copyright @ 2011 Ananda Gunawardena

To flush just the line feed character. After reading a character from the stdin, just call
flush to do the cleanup. Here is a simple program (courtesy Tim Hoffman) that illustrates
some of the concepts.

/* hello.c
lllustrates: fprintf, fflush, stdin, stdout
Author: Tim Hoffman

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv([])

{
int x,y;

fprintf(STDOUT,"Hello World: Enter two small positive numbers for x and y: ");
fflush(stdout); /* needed because output streams are buffered */
fscanf(STDIN, "%d %d", &x, &y);
fprintf(STDOUT,"\nYou entered %d for x and %d for y\n", x,y);
return EXIT_SUCCESS;

File1/O
Any file is treated as a stream of bytes ending with the EOF character. However there is
a distinction between text file and a binary file. A text file is considered a file of readable

characters with lines ending with newline(\n’) character. Here is an example of a text
file.

10\n
20\n
eof

A binary file on the other hand is a sequence of bytes stored in a file. So if your intention
is to store 10 and 20 in the file, you can store them very compactly using just two bytes.

0000101000010100

The trick is that you need to know how to read the data from the binary file since there
are no newline or EOF characters or spaces that separates the data.

Copyright @ 2011 Ananda Gunawardena

Reading from a File

A file can be considered a data stream and the first part of reading from a file is to open
up a pointer to that file. For example;

FILE* fp; // defines a pointer to any file (input/output/text/binary)

To open a file for reading we simply use the fopen function defined in stdio.

fp = fopen(filename, “r”’);

This indicates that the file with the filename(a string) is open for read only. We can
combine the two statements for example by writing

FILE* fp = fopen(“data.txt”, “r”’);

o 0
r

Available file opening modes are =read, “w” = write and “a” = append. Some
systems may require binary files to open with “b” mode. So you may write:

FILE* fp = fopen(“data.bin”, “rb”);

If the file cannot be open fopen will return NULL. You need to check this before starting
to read data from the file.

There are two functions that can be used to read from a file. fscanf and fprintf. The
function prototype for fscanf is

int fscanf(FILE* fp, const char* format, aorgl, arg2, ...);

fscanf reads formatted data from a file stream fp and stores them in arguments
according to the format statement given.

For example if a file data.txt contains two short ints

10
20

Then you can read two numbers in the file by;
FILE* fp = fopen(“data.txt”, “r”’);

intx,y;
fscanf(fp,”%d %d”, &x, &y);

Copyright @ 2011 Ananda Gunawardena

WRITING TO A FILE
We can open a file as

FILE* fout = fopen(“out.txt”,”w”);

This opens the out.txt in your working directory (it creates a new one if it does not
exists) for writing. We can write, for example two integers to the file as

fprintf(fout,”%d %d”, 20, 30);

here is a program (courtesy Tim Hoffman) that illustrates concepts as listed.

/* fileio.c
lllustrates:
argc, argv
atoi(), exit()
printf(), fprintf(), fscanf()
fopen(), fclose()
Author: Tim Hoffman

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])

{
FILE *infile, *outfile; /* infile and outfile are pointers to FILE objects */
int x,i,n;

if (argc<3)
{
printf("must enter two values on cmd line: a small positive integer followed by name
of output file.\n");
exit(EXIT_FAILURE);
}

n = atoi(argv[1]); /* read the man pages on atoi(). Converts a string to an int */
if (n<=0)
{
printf("must enter a SMALL POSITIVE INT followed by name for output file on cmd
line\n");
exit(EXIT_FAILURE);
}

outfile = fopen(argv[2], "wt"); /* "wt" means we are writing text to the file */
if (NULL==outfile) /* if the open fails then a NULL pointer was put into outfile */
{
printf("Can't open %s for output.\n", argv[2]);
exit(EXIT_FAILURE);

Copyright @ 2011 Ananda Gunawardena

}

/* READY TO WRITE A SEQUENCE Of INTS TO THE OUTPUT TEXT FILE */

printf("\nWriting to file %s\n", argv[2]);
for (i=1; i<=n; ++i)
{
printf("...wrote %d\n",i);
fprintf(outfile, "%d\n", i);
}

fclose(outfile);
/*RE-OPEN THAT FILE AS INPUT AND READ THEM BACK IN AND ECHO TO STDOUT */

infile = fopen(argv[2], "rt"); /* "rt" means we are reading the text file */
if (infile==NULL)
/* we really don't expect this to happen considering we just wrote it - but we always test */

{

printf("Can't open %s for input.\n", argv[2]);
exit(EXIT_FAILURE);

}

printf("\nNow reading from file %s\n", argv[2]);
for (i=1; i<=n; ++i)

{

fscanf(infile, "%d", &x);

printf("...read %d\n",x);

}

fclose(infile);

return 0;

}

READING FROM A BINARY FILE

If the file is binary, then we cannot use fscanf to read the data from the file. Instead we
need to use : fread

The function prototype for fread is

For example if we want to read 2 bytes from memory and store them in a short int
variable x, we can write;

fread(&x, sizeof(x),1,fp);

The prototype for fread is
size_t fread (void * ptr, size_t size, size_t count, FILE * stream);

We will discuss more on binary files later in the course.

Copyright @ 2011 Ananda Gunawardena

Arrays in C
Arrays are static blocks of memory assigned by the compiler. Arrays can be initialized
and implicitly assigned a size. For example

intA[] ={1,2,3};
declares an array of size 3 and assign values to 1, 2, 3. Array indices starts from 0.
An array can also be declared, as

constint n=10;
int A[n];

The size of the memory assigned is the number of bytes necessary to hold n integers.
The name of the array, A in this case, serves as the address of the first byte of the array
memory block. For example, the statement

printf(“%x\n”, A);

outputs the address of the starting byte of the array. As we learn pointers we will be
able to manipulate the values of the array using indirect pointers.

C does not check for array boundaries. So a statement such as A[n] = 10; is completely
legal and but could have some devastating effects. This is a weakness of C language and
a source of hacker attacks on code written in C. At CMU, there are efforts to create
“safe” subsets of C such as cO0. If you take 15-122, you will be exposed to some of these
ideas.

We can define arrays of any standard/primitive types (int, double, char etc) or user
defined types(discussed later). Arrays can be defined as dynamic structures once we
understand how to allocate memory using malloc or calloc. This will be discussed later.

Two Dimensional Arrays
C can define two dimensional arrays. For example,

char List[100][20];

Defines a two dimensional array of 100x20, where we have 100 rows to store a string of
max size 20. We can set the character 2 of string 50 to ‘a’ by doing

List[50][2] = ‘@’;

Copyright @ 2011 Ananda Gunawardena

Strings

It is very important to understand how strings are processed in C. Unlike in Java, where
String is an object, in C a string is considered to be a sequence of characters ending with
the null character ‘\0’. It is very important to have ‘\0’ at the end a string or else it may
throw run time errors (or segmentation faults) if we try to do something like this.

char name[4];
name[0]="g’; name[1]="u’; name[2]="n"; name[3]="a’;
fprintf(STDIN, “%s”, name);

It is possible in some systems that the null character may be automatically added. We
will talk about C string in detail next week, but until then you can see some of the
functions available for C strings from Bb. We just touched on some of the topics of 10,
strings and files in C. We will be discussing more of these things later in the course.

Functions

Functions allow programs to be broken into smaller, more manageable components.
Functions can also hide details of the operations from the program that uses it. Also
using functions allow programmers to debug code more easily. C functions can be
included in separate files, compiled and linked later to create the executable. The basic
form of a function is:

<return_type> function_name(arguments){
Function_statements
Return value

Although functions support modular code development, they are generally less efficient
as function execution uses run time stack for function evaluation. All argumentstoa C
function are passed by value. That is a copy of the variables is placed in the runtime
stack so function can perform its operations. As C supports passing addresses of
variables into functions, one can effectively passed an argument by “reference” so
function can modify the value of a global variable. We will discuss more about functions
later in the course.

Further Readings
K & R Chapter 1 — Tutorial Introduction Pages 5-31

Copyright @ 2011 Ananda Gunawardena

Dec HxOQct Char Cec Hx Qct Himl Chr [Dec Hy Oct Himl Shr| Dec Hye Qcet Himl Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 s#6d; [95 A0 140 `
1 1 001 30H (start of heading) 33 21 041 !: ! 65 41 101 «#65; A4 97 61 141 a: &
2 2 002 5TX [start of text) 34 22 042 «#34; 7 66 42 10Z «#66; B 95 62 142 ##93: b
3 3 003 ETX (end of text) 35 23 043 ť # 67 43 103 &«#67; C 99 g3 143 c «C
4 4 004 EOT (end of transmission) 36 24 044 ů § 65 44 104 D D (100 64 144 d d
& 5 005 ENQ (encuiry) 37 25 045 %: % 69 45 105 E E (10l &5 145 =#101; &
& & 006 ACKE (acknowledge) 38 26 046 &§3567 & 70 46 106 F F |10Z 66 146 &#l02; €
77 007 BEL (bhell) 39 27 047 ' 71 47 107 G 7 (103 a7 147 g o
85 & 010 B3 (backspace) 40 28 050 &«#407 | 72 45 110 «#72: H |104 65 150 h: h
9 9 011 TAE (horizontal tah) 41 29 051):) 73 49 111 «#73: I |105 69 151 &#l05; 1
10 & 0lZ LF (NL line feed, new linej| 42 24 0582 * * 74 44 112 J:; T |106 64 152 j7 1
11 B 013 VT (wertical tab) 4% ZB 053 + + 75 4B 113 K K |107 6B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 ,: , 76 4C 114 «#76: L |108 6C 154 i 1
13 D 015 CR (carriage return) 45 ZD 055 - - 77 4D 115 «#77: M (109 6D 155 &#l09:; n
14 E 016 30 (shift out) 46 ZE 056 . . 78 4E lle L N (110 6E 156 &#¥1l0; 1
15 F 017 3I (shift in) 47 ZF 057 «§47: 7 79 4F 117 O 0 |111 &F 1587 &#lll; ©
16 10 0Z0 DLE (data link escape) 45 30 060 &§45; 0 g0 50 120 P P |11z 70 le0 &#l1&; p
17 11 021 DCl (dewvice control 1) 49 31 061 «#49; 1 8l 51 121 «#51; 0 (113 71 161 q: O
18 12 022 DCZ (dewvice control 2) 50 32 062 «#50; 2 82 52 122 «#582:; R (114 72 162 &#ll4d: ¢
19 13 023 DC3 (device control 3) Bl 33 063 3 3 83 53 123 «#83; 35 (115 73 163 &#ll5; S
20 14 0Z4 DC4 (device control 4) 5Z 34 084 4 4 84 54 12Z4 T T 116 74 led s#lla; ©
21 15 025 NAK (negatiwve acknowledge) 53 35 085 ș 5 85 55 125 ͕ T (117 75 1a5 &#l17; 1
22 16 026 5¥N (synchronous idle) 54 36 066 6 6 86 56 126 «#586; W (118 76 166 &8; W
23 17 027 ETE (end of tranhs. block) 55 37 067 «#55: 7 87 57 127 «#587: W (119 77 167 &#ll9: w
24 18 030 CAN (cancel) 56 38 070 &f56; 8 88 58 130 X X |L20 78 170 lzZ0; =
25 19 031 EM (end of medium) 57 39 071 «#57: 9 g9 59 131 Y T (121 79 171 &#lZ1; ¥
26 1k 032 5UE (substitute) 5G 3k 072 7 a0 54 132 Z I |122 7h 172 &#lZ2: =
27 1B 033 ELC (escape) 59 3B 073 ;: ; 91 5B 133 «#91: [|123 7B 173 {:; {
28 1C 034 F3 (file separator) 60 3C 074 < < 92 5C 134 \ \ |124 7C 174 s#l124; |
29 1D 035 G¥ (group separator) 61 3D 075 l; = 93 5D 135] 1 |125 7D 175 } }
30 1E 036 B3 (record separator) 62 3E 076 > > 94 5E 136 ^ * 126 TE 176 &#lZa; ~
31 1F 037 U3 (unit separator) 63 3F 077 «#63; ¢ 95 5F 137 «#95; _ |127 7F 177 &#l27; DEL
Source: www.LookupTables .com
ASCIl TABLE
Exercises

1. Suppose you want to process a binary file (a sequence of bytes ending with EOF
character) and output characters in the file. How would you do that?

2. Write a program to read a file of text and count the words in the file. Output one
word per line to STDOUT.

3. Suppose a TAB is 3 characters long. Write a program that will take a string (with
tabs) as input and replace each tab with a space.

4. Suppose a file of the following format is given.

123/n
34/n
EOF

Write the binary representation of the file. See if you can write a little program to
confirm your output.

Answers
1. We can read one character at a time from any file until we hit EOF character
(assuming file has an EOF character).
char ch;
FILE* fp = fopen(filename,”r”);

Copyright @ 2011 Ananda Gunawardena

while (fscanf(fp,”%c”, &ch) != EOF) {}

4. 123/n
34/n
EOF

123/n=00110001001100100011001100001010

34/n =001100110011010000001010
EOF =There is no ASCII value for EOF

Copyright @ 2011 Ananda Gunawardena

