What's next

- Thus far: Variable elimination
\square (Often) Efficient algorithm for inference in graphical models
- Next: Understanding complexity of variable elimination
\square Will lead to cool junction tree algorithm later

Example: Large induced-width with small number of parents

Finding optimal elimination order

Elimination order:
$\{C, D, I, S, L, H, J, G\}$

- Theorem: Finding best elimination order is NP-complete:
\square Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width $\leq K$

Interpretation:

\square Hardness of finding elimination order in addition to hardness of inference
\square Actually, can find elimination order in time exponential in size of largest clique same complexity as inference

Chordal graphs and triangulation

- Triangulation: turning graph into chordal graph
- Max Cardinality Search:
\square Simple heuristic
- Initialize unobserved nodes \mathbf{X} as unmarked
- For $\mathrm{k}=|\mathrm{X}|$ to 1
$\square X \leftarrow$ unmarked var with most marked neighbors
$\square \triangleleft(\mathrm{X}) \leftarrow \mathrm{k}$
\square Mark X
- Theorem: Obtains optimal order for chordal graphs
- Often, not so good in other graphs!

Minimum fill/size/weight heuristics

- Many more effective heuristics see reading
- Min (weighted) fill heuristic
\square Often very effective
- Initialize unobserved nodes \mathbf{X} as unmarked
- For $\mathrm{k}=1$ to $|\mathbf{X}|$
$\square \mathrm{X} \leftarrow$ unmarked var whose elimination adds fewest edges
$\square \triangleleft(\mathrm{X}) \leftarrow \mathrm{k}$
\square Mark X
\square Add fill edges introduced by eliminating X
- Weighted version:
\square Consider size of factor rather than number of edges

Choosing an elimination order

- Choosing best order is NP-complete
\square Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
\square Even optimal order can lead to exponential variable elimination computation
- In practice
\square Variable elimination often very effective
\square Many (many many) approximate inference approaches available when variable elimination too expensive
\square Most approximate inference approaches build on ideas from variable elimination

Most likely explanation (MLE)

■ Query: $\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)$

Using defn of conditional probs:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} \frac{P\left(x_{1}, \ldots, x_{n}, e\right)}{P(e)}
$$

- Normalization irrelevant:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n}, e\right)
$$

Max-marginalization

MLE Variable elimination algorithm - Forward pass

- Given a BN and a MLE query $\max _{x_{1}, \ldots, x_{n}} P\left(x_{1}, \ldots, x_{n}, \mathbf{e}\right)$
- Instantiate evidence $\mathrm{E}=\mathbf{e}$
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $i=1$ to n, If $X_{i} \notin E$

Collect factors f_{1}, \ldots, f_{k} that include X_{i}
Generate a new factor by eliminating X_{i} from these factors

$$
g=\max _{x_{i}} \prod_{j=1}^{k} f_{j}
$$

Variable X_{i} has been eliminated!

MLE Variable elimination algorithm - Backward pass

- $\left\{\mathrm{x}_{1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$ will store maximizing assignment
- For $\mathrm{i}=\mathrm{n}$ to 1 , If $\mathrm{X}_{\mathrm{i}} \notin \mathrm{E}$

Take factors f_{1}, \ldots, f_{k} used when X_{i} was eliminated
Instantiate $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, with $\left\{\mathrm{x}_{\mathrm{i}+1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$

- Now each f_{j} depends only on X_{i}

Generate maximizing assignment for X_{i} :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

What you need to know about VE

- Variable elimination algorithm
\square Eliminate a variable:
- Combine factors that include this var into single factor
- Marginalize var from new factor
\square Cliques in induced graph correspond to factors generated by algorithm
\square Efficient algorithm ("only" exponential in induced-width, not number of variables)
- If you hear: "Exact inference only efficient in tree graphical models"
- You say: "No!!! Any graph with low induced width"
- And then you say: "And even some with very large induced-width" (special recitation)
- Elimination order is important!
\square NP-complete problem
\square Many good heuristics
- Variable elimination for MLE
\square Only difference between probabilistic inference and MLE is "sum" versus "max"

Reusing computation

Compute:
$\mathrm{X}_{0} \rightarrow \mathrm{X}_{1} \rightarrow \mathrm{X}_{2} \rightarrow \mathrm{X}_{3} \rightarrow \mathrm{X}_{4} \rightarrow \mathrm{X}_{5} P\left(X_{i} \mid x_{0}, x_{n+1}\right)$

Running intersection property

- Running intersection property (RIP)
\square Cluster tree satisfies RIP if whenever $\mathrm{X} \in \mathbf{C}_{\mathrm{i}}$ and $X \in \mathbf{C}_{j}$ then X is in every cluster in the (unique) path from \mathbf{C}_{i} to \mathbf{C}_{j}
- Theorem:

Cluster tree generated by VE satisfies RIP

Constructing a clique tree from VE

- Select elimination order \triangleleft
- Connect factors that would be generated if you run VE with order \triangleleft
- Simplify!
\square Eliminate factor that is subset of neighbor

Find clique tree from chordal graph

- Triangulate moralized graph to obtain chordal graph
- Find maximal cliques
\square NP-complete in general
\square Easy for chordal graphs
\square Max-cardinality search
- Maximum spanning tree finds clique tree satisfying RIP!!!
\square Generate weighted graph over cliques
\square Edge weights (i, j) is separator size - $\left|\mathbf{C}_{\mathrm{i}} \cap \mathbf{C}_{j}\right|$

Clique tree \& Independencies

Clique tree (or Junction tree)
\square A cluster tree that satisfies the RIP

- Theorem:

Given some BN with structure G and factors F
For a clique tree T for F consider $\mathbf{C}_{i}-\mathbf{C}_{\mathrm{j}}$ with separator \mathbf{S}_{ij} :

- \mathbf{X} - any set of vars in \mathbf{C}_{i} side of the tree
- \mathbf{Y} - any set of vars in \mathbf{C}_{i} side of the tree

Then, $\left(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{S}_{\mathrm{ij}}\right)$ in BN
Furthermore, $I(T) \subseteq I(G)$

- Clique tree for a BN

Each CPT assigned to a clique
\square Initial potential $\pi_{0}\left(\mathbf{C}_{\mathrm{i}}\right)$ is product of CPTs

Variable elimination in a clique tree 2

- VE in clique tree to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$
\square Pick a root (any node containing X_{i})
\square Send messages recursively from leaves to root
- Multiply incoming messages with initial potential
- Marginalize vars that are not in separator
\square Clique ready if received messages from all neighbors

Belief from message

- Theorem: When clique C_{i} is ready

Received messages from all neighbors
\square Belief $\pi_{i}\left(\mathbf{C}_{\mathrm{i}}\right)$ is product of initial factor with messages:

Calibrated Clique tree

- Initially, neighboring nodes don't agree on
"distribution" over separators
- Calibrated clique tree:

At convergence, tree is calibrated
Neighboring nodes agree on distribution over separator

Answering queries with clique trees

- Query within clique
- Incremental updates - Observing evidence Z=z

Multiply some clique by indicator $1(Z=z)$

- Query outside clique
\square Use variable elimination!

Message passing with division

Computing messages by multiplication:

- Computing messages by division:

Lauritzen-Spiegelhalter Algorithm

 (a.k.a. belief propagation)- Initialize all separator potentials to 1
$\checkmark \mu_{\mathrm{ij}} \leftarrow 1$
- All messages ready to transmit
- While $\exists \delta_{i \rightarrow j}$ ready to transmit
$\mu_{i j}{ }^{\prime} \leftarrow$
If $\mu_{\mathrm{ij}}^{\prime} \neq \mu_{\mathrm{ij}}$

- $\delta_{i \rightarrow j} \leftarrow$
- $\pi_{\mathrm{j}} \leftarrow \pi_{\mathrm{j}} \quad \mathrm{x} \delta_{\mathrm{i} \rightarrow \mathrm{j}}$
- $\mu_{\mathrm{ij}} \leftarrow \mu_{\mathrm{ij}}{ }^{\mathrm{j}}$
- \forall neighbors k of $\mathrm{j}, \mathrm{k} \neq \mathrm{i}, \delta_{\mathrm{j} \rightarrow \mathrm{k}}$ ready to transmit
- Complexity: Linear in \# cliques
\square for the "right" schedule over edges (leaves to root, then root to leaves)
- Corollary: At convergence, every clique has correct belief

VE versus BP in clique trees

- VE messages (the one that multiplies)
- BP messages (the one that divides)

Clique tree invariant

Clique tree potential:
Product of clique potentials divided by separators potentials

- Clique tree invariant:
$\square \mathrm{P}(\mathbf{X})=\pi_{T}(\mathbf{X})$

Belief propagation and clique tree invariant

- Theorem: Invariant is maintained by BP algorithm!
- BP reparameterizes clique potentials and separator potentials
\square At convergence, potentials and messages are marginal distributions

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
Recursive definition (leaves always send informed messages)
- Informed subtree:
\square All incoming messages informed
- Theorem:

Potential of connected informed subtree T^{\prime} is marginal over scope[T]
Corollary:
At convergence, clique tree is calibrated

- $\pi_{i}=P\left(s c o p e\left[\pi_{i}\right]\right)$
- $\mu_{\mathrm{ij}}=\mathrm{P}\left(\right.$ scope $\left.\left[\mu_{\mathrm{ij}}\right]\right)$

Clique trees versus VE

Clique tree advantages
Multi-query settings
Incremental updates
\square Pre-computation makes complexity explicit

- Clique tree disadvantages

Space requirements - no factors are "deleted"
Slower for single query
Local structure in factors may be lost when they are multiplied together into initial clique potential

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
\square VE (the one that multiplies messages)
$\square \mathrm{BP}$ (the one that divides by old message)
- Clique tree invariant
\square Clique tree potential is always the same
\square We are only reparameterizing clique potentials
- Constructing clique tree for a BN
\square from elimination order
from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique

Solve exactly problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

