

Inference in BNs hopeless?

- In general, yes!
\square Even approximate!
- In practice
\square Exploit structure
\square Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference
\square Approximate inference later this semester

General probabilistic inference

- Using def. of cond. prob.:
$P(X \mid e)=\frac{P(X, e)}{P(e)} \alpha P(, e): \quad \begin{aligned} \quad & \quad(x) \\ \Rightarrow & P(X=X, \bar{F}=e)\end{aligned}$
- Normalization:
$P(X \mid e) \propto P(X, e)$

Variable elimination algorithm

- Given a $B N$ and a query $P(X \mid e) \propto P(X, e)$
- Instantiate evidence e
- Prune non-active vars for $\{\mathrm{X}, \mathrm{e}\}$
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- Initial factors $\left\{f_{1}, \ldots, f_{n}\right\}: f_{i}=P\left(X_{i} \mid P a_{x_{i}}\right)\left(\right.$ CPT for $\left.X_{i}\right)$
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{X}, \mathrm{E}\}$
\square Collect factors f_{1}, \ldots, f_{k} that include X_{i}
\square Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1}^{k} f_{j}
$$

Variable X_{i} has been eliminated!

- Normalize $\mathrm{P}(\mathrm{X}, \mathbf{e})$ to obtain $\mathrm{P}(\mathrm{X} \mid \mathbf{e})$

Operations on factors

$$
g=\sum_{X_{i}} \prod_{j=1}^{k} f_{j}
$$

Multiplication:

Operations on factors

Marginalization:

Complexity of VE - First analysis

- Number of multiplications:
- Number of additions:

Complexity of variable elimination -(Poly)-tree graphs

What you need to know about inference thus far

- Types of queries probabilistic inference
\square most probable explanation (MPE)
\square maximum a posteriori (MAP)
- MPE and MAP are truly different (don't give the same answer)
- Hardness of inference
\square Exact and approximate inference are NP-hard
\square MPE is NP-complete
\square MAP is much harder (NPPP-complete)
- Variable elimination algorithm
\square Eliminate a variable:
- Combine factors that include this var into single factor
- Marginalize var from new factor
\square Efficient algorithm ("only" exponential in induced-width, not number of variables)
- If you hear: "Exact inference only efficient in tree graphical models"
- You say: "No!!! Any graph with low induced width"
" And then you say: "And even some with very large induced-width" (next week with context-specific independence)
- Elimination order is important!

NP-complete problem
\square Many good heuristics

Announcements

- Recitation tomorrow
\square Be there!!
- Homework 3 out later today

What's next

- Thus far: Variable elimination
\square (Often) Efficient algorithm for inference in graphical models

■ Next: Understanding complexity of variable elimination
\square Will lead to cool junction tree algorithm later

Example: Large induced-width with small number of parents

Finding optimal elimination order

Elimination order:
$\{C, D, I, S, L, H, J, G\}$

- Theorem: Finding best elimination order is NP-complete:
\square Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width $\leq K$

Interpretation:

\square Hardness of finding elimination order in addition to hardness of inference
\square Actually, can find elimination order in time exponential in size of largest clique same complexity as inference

Chordal graphs and triangulation

- Triangulation: turning graph into chordal graph
- Max Cardinality Search:
\square Simple heuristic
- Initialize unobserved nodes \mathbf{X} as unmarked
- For $\mathrm{k}=|\mathrm{X}|$ to 1
$\square X \leftarrow$ unmarked var with most marked neighbors
$\square \triangleleft(\mathrm{X}) \leftarrow \mathrm{k}$
\square Mark X
- Theorem: Obtains optimal order for chordal graphs
- Often, not so good in other graphs!

Minimum fill/size/weight heuristics

- Many more effective heuristics see reading
- Min (weighted) fill heuristic
\square Often very effective
- Initialize unobserved nodes \mathbf{X} as unmarked
- Fork=1 to $|\mathbf{X}|$
$\square \mathrm{X} \leftarrow$ unmarked var whose elimination adds fewest edges
$\square \triangleleft(\mathrm{X}) \leftarrow \mathrm{k}$
\square Mark X
\square Add fill edges introduced by eliminating X
- Weighted version:
\square Consider size of factor rather than number of edges

Choosing an elimination order

- Choosing best order is NP-complete

Reduction from MAX-Clique

- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
\square Even optimal order can lead to exponential variable elimination computation
- In practice
\square Variable elimination often very effective
\square Many (many many) approximate inference approaches available when variable elimination too expensive
\square Most approximate inference approaches build on ideas from variable elimination

