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What you need to know so far 

  Goal: 
 Find an efficient distribution that is close to posterior 

  Distance: 
 measure distance in terms of KL divergence 

  Asymmetry of KL: 
 D(p||q) ≠ D(q||p) 

  Computing right KL is intractable, so we use the 
reverse KL 
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Reverse KL & The Partition Function 
Back to the general case 

  Consider again the defn. of D(q||p): 
  p is Markov net PF 

  Theorem:  

  where energy functional: 
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Understanding Reverse KL, Energy 
Function & The Partition Function 

  Maximizing Energy Functional ⇔ Minimizing Reverse KL 

  Theorem: Energy Function is lower bound on partition function 

  Maximizing energy functional corresponds to search for tight lower bound on 
partition function 
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Structured Variational Approximate 
Inference 

  Pick a family of distributions Q that allow for exact 
inference 
  e.g., fully factorized (mean field) 

  Find Q2Q that maximizes  

  For mean field 
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Optimization for mean field 

  Constrained optimization, solved via Lagrangian multiplier 
   9 λ, such that optimization equivalent to: 

  Take derivative, set to zero 

  Theorem: Q is a stationary point of mean field approximation iff  for each i:  
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Understanding fixed point equation 
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Simplifying fixed point equation 
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  Theorem: The fixed point: 

is equivalent to: 

  where the Scope[φj] = Uj [ {Xi} 

Qi only needs to consider factors 
that intersect Xi 
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There are many stationary points! 
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  Initialize Q (e.g., randomly or smartly) 
  Set all vars to unprocessed 
  Pick unprocessed var Xi 

  update Qi: 

  set var i as processed 
  if Qi changed 

  set neighbors of Xi to unprocessed 

  Guaranteed to converge 

Very simple approach for finding 
one stationary point Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 



7 

10-708 – ©Carlos Guestrin 2006-2008 13 

More general structured approximations  

  Mean field very naïve approximation 
  Consider more general form for Q 

  assumption: exact inference doable over Q 

  Theorem: stationary point of energy functional: 

  Very similar update rule 
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Computing update rule for general case 

  Consider one φ: 
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Structured Variational update 
requires inference 

  Compute marginals wrt Q of cliques in original graph and cliques in 
new graph, for all cliques 

  What is a good way of computing all these marginals? 

  Potential updates: 
  sequential: compute marginals, update ψj, recompute marginals 

  parallel: compute marginals, update all ψ’s, recompute marginals 
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What you need to know about 
variational methods 

  Structured Variational method: 
  select a form for approximate distribution 
  minimize reverse KL  

  Equivalent to maximizing energy functional 
  searching for a tight lower bound on the partition function 

  Many possible models for Q: 
  independent (mean field) 
  structured as a Markov net 
  cluster variational 

  Several subtleties outlined in the book 
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Recall message passing over 
junction trees 

  Exact inference: 
  generate a junction tree 
  message passing over 

neighbors 
  inference exponential in size 

of clique 
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Belief Propagation on Tree 
Pairwise Markov Nets 

  Tree pairwise Markov net is a tree!!!  
  no need to create a junction tree 

  Message passing: 

  More general equation: 
  N(i) – neighbors of i in pairwise MN 

  Theorem: Converges to true probabilities: 
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Loopy Belief Propagation on 
Pairwise Markov Nets 

  What if we apply BP in a graph with loops? 
  send messages between pairs of nodes in graph, and hope 

for the best 

  What happens? 
  evidence goes around the loops multiple times 
  may not converge 
  if it converges, usually overconfident about probability values 

  But often gives you reasonable, or at least useful answers 
  especially if you just care about the MPE rather than the 

actual probabilities 
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More details on Loopy BP 
  Numerical problem: 

  messages < 1 get multiplied together 
as we go around the loops 

  numbers can go to zero 
  normalize messages to one: 

  Zi!j doesn’t depend on Xj, so doesn’t change the answer 

  Computing node “beliefs” (estimates of probs.):   
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An example of running loopy BP 
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Convergence 

  If you tried to send all messages, and beliefs 
haven’t changed (by much) ! converged 
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(Non-)Convergence of Loopy BP 

  Loopy BP can oscillate!!! 
  oscillations can small 
  oscillations can be really bad! 

  Typically,  
  if factors are closer to uniform, loopy does well 

(converges) 
  if factors are closer to deterministic, loopy doesn’t 

behave well  

  One approach to help: damping messages 
  new message is average of old message and 

new one:  

  often better convergence 
  but, when damping is required to  

get convergence, result often bad 
graphs from Murphy et al. ’99 
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Loopy BP in Factor graphs 
  What if we don’t have pairwise 

Markov nets? 
1.  Transform to a pairwise MN 
2.  Use Loopy BP on a factor 

graph 

  Message example: 
  from node to factor: 

  from factor to node: 

A B C D E 

ABC ABD BDE CDE 
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Loopy BP in Factor graphs 
  From node i to factor j: 

  F(i) factors whose scope 
includes Xi  

  From factor j to node i: 
  Scope[φj] = Y[{Xi} 

  Belief:  
  Node: 

  Factor: 

A B C D E 

ABC ABD BDE CDE 
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What you need to know about 
loopy BP 

  Application of belief propagation in loopy graphs 

  Doesn’t always converge 
 damping can help 
 good message schedules can help (see book) 

  If converges, often to incorrect, but useful results 

  Generalizes from pairwise Markov networks by 
using factor graphs 


