

What you learned about so far

- Bayes nets
- Junction trees
- (General) Markov networks
- Pairwise Markov networks
\boxed{r} Factor graphs
- How do we transform between them?
- More formally:

I give you an graph in one representation, find an I-map in the other

BNs $\stackrel{H}{4}$ MNs: Moralization

- Theorem: Given a BN G the Markov net H formed by moralizing G is the minimal I-map for I(G)
- Intuition:
\square in a Markov net, each factor must correspond
 to a subset of a clique
the factors in BNs are the CPTs
CPTs are factors over a node and its parents
thus node and its parents must form a clique
- Effect:
some independencies that could be read from the BN graph become hidden

From Markov nets to Bayes nets

MNs \rightarrow BNs: Triangulation

- Theorem: Given a MN H, let G be the Bayes net that is a minimal I-map for I(H) then G must be chordal
- Intuition:

\square v-structures in BN introduce immoralities
\square these immoralities were not present in a Markov net
\square the triangulation eliminates immoralities
- Effect:
many independencies that could be read from
 the MN graph become hidden

Markov nets v. Pairwise MNs

- Every Markov network can be transformed into a Pairwise Markov net
\square introduce extra "variable" for each factor over three or more variables
domain size of extra variable is exponential in number of vars in factor

- Effect:

\square any local structure in factor is lost
\square a chordal MN doesn't look chordal anymore

Overview of types of graphical models and transformations between them

Readings:

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
Noyember 3 rd 20088

Approximate inference overview

- So far: VE \& junction trees
\square exact inference
\square exponential in tree-width
- There are many many many many approximate inference algorithms for PGMs
- We will focus on three representative ones:
samplingvariational inferenceloopy belief propagation and generalized belief propagation
\qquad

Approximating the posterior v. approximating the prior

- Prior model represents entire world
\square world is complicated
\square thus prior model can be very complicated
- Posterior: after making observations

\square sometimes can become much more sure about the way things are
\square sometimes can be approximated by a simple model
- First approach to approximate inference: find simple model that is "close" to posterior
- Fundamental problems:
\square what is close?
\square posterior is intractable result of inference, how
 can we approximate what we don't have?

KL divergence: Distance between distributions

- Given two distributions p and q KL divergence:
- $D(p \| q)=0$ iff $p=q$
- Not symmetric - p determines where difference is important
$\square \mathrm{p}(\mathrm{x})=0$ and $\mathrm{q}(\mathrm{x}) \neq 0$
$\square \mathrm{p}(\mathrm{x}) \neq 0$ and $\mathrm{q}(\mathrm{x})=0$

Find simple approximate distribution

- Suppose p is intractable posterior
- Want to find simple q that approximates p
- KL divergence not symmetric
- $D(p \| q)$
true distribution p defines support of diff.
\square the "correct" direction
\square will be intractable to compute

- $D(q \| p)$
\square approximate distribution defines support
\square tends to give overconfident results
\square will be tractable

Back to graphical models

- Inference in a graphical model:
$\square \mathrm{P}(\mathbf{x})=$
\square want to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{e}\right)$
\square our p :
- What is the simplest q ?
\square every variable is independent:
\square mean field approximation
\square can compute any prob. very efficiently

```
D(q||p) for mean field -
    KL the reverse direction
\square p:
■ q:
- D(q|p)=
```


$\mathrm{D}(\mathrm{q} \| \mathrm{p})$ for mean field -
KL the reverse direction: cross-entropy term

- p :
- q:
$D(q \| p)=\sum_{x} q(x) \log q(x)-\sum_{x} q(x) \log p(x)$

What you need to know so far

- Goal:

Find an efficient distribution that is close to posterior

- Distance:
\square measure distance in terms of KL divergence
- Asymmetry of KL:
$D(p \| q) \neq D(q \| p)$
- Computing right KL is intractable, so we use the reverse KL

Reverse KL \& The Partition Function

Back to the general case

- Consider again the defn. of $\mathrm{D}(\mathrm{q} \| \mathrm{p})$:
$\square p$ is Markov net P_{F}

■ Theorem: $\quad \ln Z=F\left[P_{\mathcal{F}}, Q\right]+D\left(Q \| P_{\mathcal{F}}\right)$

- where energy functional:
$F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$

Understanding Reverse KL, Energy Function \& The Partition Function

$\ln Z=F\left[P_{\mathcal{F}}, Q\right]+D\left(Q \| P_{\mathcal{F}}\right) \quad F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$

- Maximizing Energy Functional \Leftrightarrow Minimizing Reverse KL
- Theorem: Energy Function is lower bound on partition function
\square Maximizing energy functional corresponds to search for tight lower bound on partition function

Structured Variational Approximate
 Inference
 $\ln Z=F\left[P_{\mathcal{F}}, Q\right]+D\left(Q \| P_{\mathcal{F}}\right)$
 $F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$

- Pick a family of distributions Q that allow for exact inference
\square e.g., fully factorized (mean field)
- Find $\mathrm{Q} \in \mathrm{Q}$ that maximizes $F\left[P_{\mathcal{F}}, Q\right]$
- For mean field

Optimization for mean field

$$
\begin{gathered}
\max _{Q} F\left[P_{\mathcal{F}}, Q\right]=\max _{Q} \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+\sum_{j} H_{Q_{j}}\left(X_{j}\right) \\
\forall i, \sum_{x_{i}} Q_{i}\left(x_{i}\right)=1
\end{gathered}
$$

- Constrained optimization, solved via Lagrangian multiplier
$\square \exists \lambda$, such that optimization equivalent to:
\square Take derivative, set to zero
- Theorem: Q is a stationary point of mean field approximation iff for each i :

$$
Q_{i}\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}
$$

Understanding fixed point equation

$Q_{i}\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}$

Simplifying fixed point equation

$Q_{i}\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}$

Q_{i} only needs to consider factors that intersect X_{i}

- Theorem: The fixed point:
$Q_{i}\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}$
is equivalent to:

$$
Q_{i}\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi_{j}: X_{i} \in \operatorname{Scope}\left[\phi_{j}\right]} E_{Q}\left[\ln \phi_{j}\left(\mathbf{U}_{j}, x_{i}\right)\right]\right\}
$$

\square where the Scope $\left[\phi_{j}\right]=\mathbf{U}_{j} \cup\left\{X_{i}\right\}$

There are many stationary points!

Very simple approach for finding one stationary point

- Initialize Q (e.g., randomly or smartly)
- Set all vars to unprocessed
- Pick unprocessed var X_{i}
\square update Q_{i} :

$Q_{i}\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi_{j}: X_{i} \in \operatorname{Scope}\left[\phi_{j}\right]} E_{Q}\left[\ln \phi_{j}\left(\mathbf{U}_{j}, x_{i}\right)\right]\right\}$
\square set vari as processed
\square if Q_{i} changed
- set neighbors of X_{i} to unprocessed
- Guaranteed to converge

More general structured approximations

- Mean field very naïve approximation
- Consider more general form for Q
\square assumption: exact inference doable over Q

- Theorem: stationary point of energy functional:
$\psi_{j}\left(\mathbf{c}_{\mathbf{j}}\right) \propto \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid \mathbf{c}_{\mathbf{j}}\right]-\sum_{\psi \in \mathcal{Q} \backslash\left\{\psi_{j}\right\}} E_{Q}\left[\ln \psi \mid \mathbf{c}_{\mathbf{j}}\right]\right\}$
- Very similar update rule

Computing update rule for general case

$\psi_{j}\left(\mathbf{c}_{\mathbf{j}}\right) \propto \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid \mathbf{c}_{\mathbf{j}}\right]-\sum_{\psi \in \mathcal{Q} \backslash\left\{\psi_{j}\right\}} E_{Q}\left[\ln \psi \mid \mathbf{c}_{\mathbf{j}}\right]\right\}$

- Consider one ϕ :

Structured Variational update requires inference

$\psi_{j}\left(\mathbf{c}_{\mathbf{j}}\right) \propto \exp \left\{\sum_{\phi \in \mathcal{F}} E_{Q}\left[\ln \phi \mid \mathbf{c}_{\mathbf{j}}\right]-\sum_{\psi \in \mathcal{Q} \backslash\left\{\psi_{j}\right\}} E_{Q}\left[\ln \psi \mid \mathbf{c}_{\mathbf{j}}\right]\right\}$

- Compute marginals wrt Q of cliques in original graph and cliques in new graph, for all cliques
- What is a good way of computing all these marginals?
- Potential updates:
\square sequential: compute marginals, update ψ_{j}, recompute marginals
\square parallel: compute marginals, update all ψ 's, recompute marginals

What you need to know about variational methods

- Structured Variational method:
\square select a form for approximate distribution
\square minimize reverse KL
- Equivalent to maximizing energy functional
\square searching for a tight lower bound on the partition function
- Many possible models for Q :
\square independent (mean field)
\square structured as a Markov net
\square cluster variational
- Several subtleties outlined in the book

