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Normalization for computing 

probabilities

 To compute actual probabilities, must compute 

normalization constant (also called partition function)

 Computing partition function is hard! ! Must sum over 

all possible assignments



10-708 – Carlos Guestrin 2006-2008 3

Factorization in Markov networks

 Given an undirected graph H over variables 

X={X1,...,Xn}

 A distribution P factorizes over H if 9

 subsets of variables D1X,…, DmX, such that the Di are 

fully connected in H

 non-negative potentials (or factors) f1(D1),…, fm(Dm)

 also known as clique potentials

 such that

 Also called Markov random field H, or Gibbs 

distribution over H
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Global Markov assumption in 

Markov networks

 A path X1 – … – Xk is active when set of variables 

Z are observed if none of Xi 2 {X1,…,Xk} are 

observed (are part of Z) 

 Variables X are separated from Y given Z in 

graph H, sepH(X;Y|Z), if there is no active path 

between any X2X and any Y2Y given Z

 The global Markov assumption for a Markov 

network H is
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The BN Representation Theorem

Joint probability

distribution:Obtain

If conditional

independencies

in BN are subset of 

conditional 

independencies in P

Important because: 

Independencies are sufficient to obtain BN structure G

If joint probability

distribution: Obtain

Then conditional

independencies

in BN are subset of 

conditional 

independencies in P

Important because: 

Read independencies of P from BN structure G
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Markov networks representation Theorem 1

 If you can write distribution as a normalized product of 

factors ) Can read independencies from graph

Then H is an I-map for P

If joint probability

distribution P:
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What about the other direction for Markov 

networks ?

 Counter-example: X1,…,X4 are binary, and only eight assignments 

have positive probability:

 For example, X1X3|X2,X4:

 E.g., P(X1=0|X2=0, X4=0)

 But distribution doesn’t factorize!!!

If H is an I-map for P Then

joint probability

distribution P:
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Markov networks representation Theorem 2

(Hammersley-Clifford Theorem)

 Positive distribution and independencies ) P factorizes 

over graph

If H is an I-map for P

and 

P is a positive distribution
Then

joint probability

distribution P:
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Representation Theorem for 

Markov Networks

If H is an I-map for P

and 

P is a positive distribution
Then

Then H is an I-map for P

If joint probability

distribution P:

joint probability

distribution P:
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Completeness of separation in 

Markov networks

 Theorem: Completeness of separation

 For “almost all” distributions that P factorize over Markov 

network H, we have that I(H) = I(P)

 “almost all” distributions: except for a set of measure zero of 

parameterizations of the Potentials (assuming no finite set of 

parameterizations has positive measure)

 Analogous to BNs
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What are the “local” independence 

assumptions for a Markov network?

 In a BN G:

 local Markov assumption: variable independent of 

non-descendants given parents 

 d-separation defines global independence

 Soundness: For all distributions:  

 In a Markov net H:

 Separation defines global independencies

 What are the notions of local independencies?
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Local independence assumptions 

for a Markov network

 Separation defines global independencies

 Pairwise Markov Independence:

 Pairs of non-adjacent variables A,B are independent given all 

others

 Markov Blanket: 

 Variable A independent of rest given its neighbors

T1

T3 T4

T5 T6

T2

T7 T8 T9
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Equivalence of independencies in 

Markov networks

 Soundness Theorem: For all positive distributions P, 

the following three statements are equivalent:

 P entails the global Markov assumptions

 P entails the pairwise Markov assumptions

 P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov 

Networks

 A fully connected graph is an I-map

 Remember minimal I-maps?

 A “simplest” I-map ! Deleting an edge makes it no longer an I-map 

 In a BN, there is no unique minimal I-map

 Theorem: For positive distributions & Markov network, minimal I-map is 

unique!!

 Many ways to find minimal I-map, e.g.,

 Take pairwise Markov assumption:

 If P doesn’t entail it, add edge:
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How about a perfect map?

 Remember perfect maps?

 independencies in the graph are exactly the same as those in P

 For BNs, doesn’t always exist

 counter example: Swinging Couples

 How about for Markov networks?
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Unifying properties of BNs and MNs

 BNs:

 give you: V-structures, CPTs are conditional probabilities, can 

directly compute probability of full instantiation

 but: require acyclicity, and thus no perfect map for swinging 

couples

 MNs:

 give you: cycles, and perfect maps for swinging couples

 but: don’t have V-structures, cannot interpret potentials as 

probabilities, requires partition function

 Remember PDAGS???

 skeleton + immoralities

 provides a (somewhat) unified representation

 see book for details
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What you need to know so far 

about Markov networks

 Markov network representation:
 undirected graph

 potentials over cliques (or sub-cliques)

 normalize to obtain probabilities

 need partition function

 Representation Theorem for Markov networks
 if P factorizes, then it’s an I-map

 if P is an I-map, only factorizes for positive distributions 

 Independence in Markov nets:
 active paths and separation

 pairwise Markov and Markov blanket assumptions

 equivalence for positive distributions

 Minimal I-maps in MNs are unique

 Perfect maps don’t always exist
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Some common Markov networks 

and generalizations

 Pairwise Markov networks

 A very simple application in computer vision

 Logarithmic representation

 Log-linear models

 Factor graphs
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Pairwise Markov Networks

 All factors are over single variables or pairs of 

variables:

 Node potentials

 Edge potentials

 Factorization:

 Note that there may be bigger cliques in the 

graph, but only consider pairwise potentials

T1

T3 T4

T5 T6

T2

T7 T8 T9
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A very simple vision application

 Image segmentation: separate foreground from 

background

 Graph structure: 

 pairwise Markov net

 grid with one node per pixel

 Node potential:

 “background color” v. “foreground color”

 Edge potential:

 neighbors like to be of the same class
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Logarithmic representation

 Standard model:

 Log representation of potential (assuming positive potential):

 also called the energy function

 Log representation of Markov net:
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Log-linear Markov network

(most common representation)

 Feature is some function f [D] for some subset of variables D

 e.g., indicator function

 Log-linear model over a Markov network H:

 a set of features f1[D1],…, fk[Dk]

 each Di is a subset of a clique in H

 two f’s can be over the same variables

 a set of weights w1,…,wk

 usually learned from data
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Structure in cliques

 Possible potentials for this graph: A
B

C
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Factor graphs

 Very useful for approximate inference

 Make factor dependency explicit

 Bipartite graph:

 variable nodes (ovals) for X1,…,Xn

 factor nodes (squares) for f1,…,fm

 edge Xi – fj if Xi2 Scope[fj]

A
B

C
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Exact inference in MNs and Factor 

Graphs

 Variable elimination algorithm presented in terms 

of factors ! exactly the same VE algorithm can be 

applied to MNs & Factor Graphs

 Junction tree algorithms also applied directly here:

 triangulate MN graph as we did with moralized graph

 each factor belongs to a clique

 same message passing algorithms
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Summary of types of Markov nets

 Pairwise Markov networks

 very common

 potentials over nodes and edges

 Log-linear models

 log representation of potentials

 linear coefficients learned from data

most common for learning MNs

 Factor graphs

 explicit representation of factors

 you know exactly what factors you have

 very useful for approximate inference
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What you learned about so far

 Bayes nets

 Junction trees

 (General) Markov networks

 Pairwise Markov networks

 Factor graphs

 How do we transform between them?

 More formally:

 I give you an graph in one representation, find an I-map

in the other
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From Bayes nets to Markov nets

SATGrade

Job

Letter

Intelligence
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BNs ! MNs: Moralization

 Theorem: Given a BN G the Markov net 

H formed by moralizing G is the minimal     

I-map for I(G)

 Intuition:

 in a Markov net, each factor must correspond 

to a subset of a clique

 the factors in BNs are the CPTs

 CPTs are factors over a node and its parents

 thus node and its parents must form a clique

 Effect:

 some independencies that could be read from 

the BN graph become hidden

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence
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From Markov nets to Bayes nets

ExamGrade

Job

Letter

Intelligence

SAT
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MNs ! BNs: Triangulation

 Theorem: Given a MN H, let G be the 

Bayes net that is a minimal I-map for I(H) 

then G must be chordal

 Intuition:

 v-structures in BN introduce immoralities

 these immoralities were not present in a 

Markov net

 the triangulation eliminates immoralities

 Effect:

 many independencies that could be read from 

the MN graph become hidden

ExamGrade

Job

Letter

Intelligence

SAT

ExamGrade

Job

Letter

Intelligence

SAT
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Markov nets v. Pairwise MNs

 Every Markov network can be 

transformed into a Pairwise Markov net

 introduce extra “variable” for each factor 

over three or more variables

 domain size of extra variable is exponential 

in number of vars in factor

 Effect:

 any local structure in factor is lost

 a chordal MN doesn’t look chordal anymore

A
B

C



10-708 – Carlos Guestrin 2006-2008 33

Overview of types of graphical models 

and transformations between them


