Undirected Graphical Models

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
October 29th, 2008

Normalization for computing probabilities

- To compute actual probabilities, must compute normalization constant (also called partition function)

$$
\begin{aligned}
& P(A B C D)=\frac{1}{z} \phi_{1}(A B) \phi_{2}(B C) \phi_{3}(C D) \phi_{4}(D A) \\
& Z=\sum_{a} \sum_{b} \sum_{c} \sum_{d} \phi_{1}(a b) \phi_{2}(b c) \phi_{3}(c d) \phi_{4}\left(d_{d}\right)
\end{aligned}
$$

- Computing partition function is hard! ! Must sum over all possible assignments

Can uSe VE to compute Z if Markov Network has low tree width

Factorization in Markov networks

Given an undirected graph H over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

A distribution P factorizes over H if $\}$
\square subsets of variables $\mathbf{D}_{1} \subseteq \mathbf{X}, \ldots, \mathbf{D}_{\mathbf{m} \subseteq \mathbf{X}}$, such that the $\mathbf{D}_{\mathbf{i}}$ ar fully connected in H
\square non-negative potentials (or factors) $\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{\mathrm{m}}\left(\mathbf{D}_{\mathrm{m}}\right)$

- also known as clique potentials
\square such that

Also called Markov random field H, or Gibbs distribution over H

Global Markov assumption in Markov networks

- A path $X_{1}-\ldots-X_{k}$ is active when set of variables Z are observed if none of $X_{i}\left\{\left\{X_{1}, \ldots, X_{k}\right\}\right.$ are observed (are part of \mathbf{Z})
- Variables \mathbf{X} are separated from \mathbf{Y} given \mathbf{Z} in
 graph $H, \operatorname{sep}_{H}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$, if there is no active path between any $\mathbf{X E X}$ and any Yê given \mathbf{Z}

The global Markov assumption for a Markov network H is

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P
Obtain
Joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Important because:
Independencies are sufficient to obtain BN structure G

Markov networks representation Theorem 1

> If joint probability \& MN graph $H \rightarrow$ addedge between $X_{u}-x_{v}$, if $x_{u}, \nu_{v} \in D_{i}$
> $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)$
> Then H is an I-map for P

- If you can write distribution as a normalized product of factors) Can read independencies from graph

What about the other direction for Markov networks?

If H is an I-map for P

joint probability distribution P :

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Counter-example: X_{1}, \ldots, X_{4} are binary, and only eight assignments have positive probability:

independencies

\square E.g., $\mathrm{P}\left(\mathrm{X}_{1}=0 \mid \mathrm{X}_{2}=0, \mathrm{X}_{4}=0\right)$

- But distribution doesn’t factorize!!!

Markov networks representation Theorem 2 (Hammersley-Clifford Theorem)

If H is an I-map for P and
P is a positive distribution
Then
joint probability distribution P :

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Positive distribution and independencies $\xlongequal[\eta]{\vec{r}} P$ factorizes over graph

$$
\forall x \quad p(x)>0
$$

Representation Theorem for Markov Networks

If joint probability distribution P :

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

Then

H is an I-map for P

If H is an I-map for P and
P is a positive distribution
joint probability distribution P :

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

Completeness of separation in Markov networks

- Theorem: Completeness of separation
\square For "almost all" distributions that P factorize over Markov network H, we have that $T(H)=I(P)$
\square "almost all" distributions. except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Analogous to BNs

What are the "local" independence assumptions for a Markov network?

- In a BN G:
local Markov assumption: variable independent of non-descendants given parents
\square d-separation defines global independence
\square Soundness: For all distributions:
- In a Markov net H :
\square Separation defines global independencies
\square What are the notions of local independencies?

Local independence assumptions for a Markov network

Separation defines global independencies

Pairwise Markov Independence:

\square Pairs of non-adjacent variables A,B are independent given all others

Markov Blanket: $M B(A)$ こ neighbors of A i
Variable A independent of rest given its neighbors

Equivalence of independencies in Markov networks

- Soundness Theorem: For all positive distributions P, the following three statements are equivalent:
$\square P$ entails the global Markov assumptions

$$
\operatorname{Sep}(x, y \mid z) \Rightarrow X \perp y \mid z
$$

$\square P$ entails the pairwise Markov assumptions

$$
A \perp B \mid \int-\{A, B\}
$$

$\square P$ entails the local Markov assumptions (Markov blanket)

$$
A \perp X-M B(A) \mid M B(A)
$$

$A-B$

$$
\begin{aligned}
& \text { may be dependent given } X-\{A, B\} \\
& \text { for almost all distributions } 7 A+B T X-\{A, B\}
\end{aligned}
$$

Minimal I-maps and Markov Networks

- A fully connected graph is an I-map
- Remember minimal I-maps?
\square A "simplest" I-maps ${ }^{\text {D Deleting an edge makes it no longer an I-map }}$
- In a BN, there is no unique minimal I-map
- Theorem: For positive distributions \& Markov network, minimal I-map is unique!!
- Many ways to find minimal I-map, egg.,
\square Take pairwise Markov assumption: A not connected to B
\square If P doesn't entail it, add edge:

How about a perfect map?

- Remember perfect maps?
\square independencies in the graph are exactly the same as those in P
- For BNs, doesn't always exist
\square counter example: Swinging Couples
- How about for Markov networks?

$$
\begin{aligned}
& A+B \\
& >A \perp B / C
\end{aligned}
$$

minimal I-mcp MN

Unifying properties of BNs and MNs

- BNs:
\square give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
\square but: require acyclicity, and thus no perfect map for swinging couples
- MNs:
\square give you: cycles, and perfect maps for swinging couples
\square but: don't have V-structures, cannot interpret potentials as probabilities, requires partition function
■ Remember PDAGS???
\square skeleton + immoralities
\square provides a (somewhat) unified representation
\square see book for details

What you need to know so far about Markov networks

- Markov network representation:
\square undirected graph
\square potentials over cliques (or sub-cliques)
\square normalize to obtain probabilities
\square need partition function
- Representation Theorem for Markov networks
\square if P factorizes, then it's an I-map
\square if P is an I-map, only factorizes for positive distributions
- Independence in Markov nets:
\square active paths and separation
\square pairwise Markov and Markov blanket assumptions
\square equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

Some common Markov networks and generalizations

- Pairwise Markov networks
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
\square Node potentials $\phi_{i}\left(X_{i}\right)$
\square Edge potentials
- Factorization:

if iijcomectid in graph

$$
P(x)=\frac{1}{z} \pi_{i} \phi_{i}\left(x_{i}\right) \prod_{(i, j \in H} \phi_{i j}\left(x_{i}, x_{j}\right)
$$

often $\phi_{i}\left(\psi_{i}, m_{i}\right)$, a little losS often $\phi_{j}\left(\psi_{i}, x_{i j}, m_{i}, m_{j}\right)$
Note that there may be bigger cliques in the graph, but only consider pairwise potentials more gunerlly

$$
\phi_{i j}\left(x_{i}, x_{j,}, m_{1 ; n}\right)
$$

A very simple vision application

- Image segmentation: separate foreground from background
- Graph structure:
\square pairwise Markov net
grid with one node per pixel
- Node potential:"background color" v. "foreground color"
$\mu_{g} \equiv \operatorname{avg}$ fy color

$$
\text { 1. "foreground color") } \psi_{i}\left(x_{i}=f_{g}\right)=e^{-i} \frac{m_{i}-\mu_{f g} \|^{2}}{\sigma^{2}}
$$

May \equiv avg bg color
if \pm use only node potentials.
"salt 8 pepper noise"

- Edge potential:

$$
\phi_{i}\left(x_{i}=b g\right)=e^{-\left\|m_{i}-\mu b g\right\|^{2}} \frac{\sigma^{2}}{2}
$$

grid MN
one $v a_{r}$ per pixel $x_{i} \in\{f g, b g\}$

Logarithmic representation

- Standard model: $\quad P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)$
- Log representation of potential (assuming positive potential): \square also called the energy function

$\psi_{i}\left(D_{i}\right)=-\log \phi_{i}\left(D_{i}\right)$
states with high every

$$
P(x)=\frac{1}{z} l
$$

have low probability

Log-linear Markov network (most common representation)

Feature is some function $f[D]$ for some subset of variables \mathbf{D}
e.g., indicator function

- Log-linear model over a Markov network H :a set of features $\mathrm{f}_{1}\left[\mathbf{D}_{1}\right], \ldots, \mathrm{f}_{\mathrm{k}}\left[\mathbf{D}_{\mathrm{k}}\right]$ it's ok for $D_{i}=D_{j}$
- each \mathbf{D}_{i} is a subset of a clique in $H \quad$ ed, pairwise log-linea-model
- two f's can be over the same variablesa set of weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}$
- usually learned from data

$$
D_{i} \equiv\left\{x_{u}, k v\right\}
$$

\log linear, because $\log P$

$$
\square P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left[\sum_{i=1}^{k} w_{i} f_{i}\left(\mathbf{D}_{i}\right)\right]
$$ (risky business writ y)

exactly equivalent to MN with $p(x)>0$ 女

$$
\text { if } P(x)=0 \text { for some, then risky business }
$$

Structure in cliques

Possible potentials for this graph:

can't look at graph 8 tell the differna
 $\phi\left(A_{F}\right)$

Factor graphs

- Very useful for approximate inference

\square Make factor dependency explicit - Bipartite graph:
\square variable nodes (ovals) for $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
\square factor nodes (squares) for $\phi_{1}, \ldots, \phi_{m}$
\square edge $X_{i}-\phi_{j}$ if X_{i} © Scope $\left[\phi_{j}\right]$

$P(A B C D)=\frac{1}{z} \phi_{1}(A B D) \phi_{2}(A C D)$

Exact inference in MNs and Factor Graphs

- Variable elimination algorithm presented in terms of factors $\overrightarrow{\text { t }}$ exactly the same VE algorithm can be applied to MNs \& Factor Graphs
- Junction tree algorithms also applied directly here:
\square triangulate MN graph as we did with moralized graph
\square each factor belongs to a clique
\square same message passing algorithms

Summary of types of Markov nets

- Pairwise Markov networks
\square very common
\square potentials over nodes and edges
- Log-linear models
\square log representation of potentials
\square linear coefficients learned from data
\square most common for learning MNs
- Factor graphs
\square explicit representation of factors
- you know exactly what factors you have
\square very useful for approximate inference

What you learned about so far

- Bayes nets
- Junction trees
- (General) Markov networks
- Pairwise Markov networks
- Factor graphs
- How do we transform between them?
- More formally:
\square I give you an graph in one representation, find an I-map in the other

From Bayes nets to Markov nets

BNs _ MNs: Moralization

- Theorem: Given a BN G the Markov net H formed by moralizing G is the minimal I-map for I(G)
- Intuition:
\square in a Markov net, each factor must correspond
 to a subset of a clique
\square the factors in BNs are the CPTs
\square CPTs are factors over a node and its parents
\square thus node and its parents must form a clique
- Effect:
\square some independencies that could be read from the BN graph become hidden

From Markov nets to Bayes nets

MNs ! BNs: Triangulation

- Theorem: Given a MN H, let G be the Bayes net that is a minimal I-map for $\mathrm{I}(\mathrm{H})$ then G must be chordal
- Intuition:

\square v-structures in BN introduce immoralities
\square these immoralities were not present in a Markov net
\square the triangulation eliminates immoralities
- Effect:
\square many independencies that could be read from
 the MN graph become hidden

Markov nets v. Pairwise MNs

- Every Markov network can be transformed into a Pairwise Markov net
\square introduce extra "variable" for each factor
 over three or more variables
\square domain size of extra variable is exponential in number of vars in factor
■ Effect:
\square any local structure in factor is lost
\square a chordal MN doesn't look chordal anymore

Overview of types of graphical models and transformations between them

