

Decomposable score

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid heta, \mathcal{G}) = m \sum_i \hat{I}(X_i, \mathbf{Pa}_{X_i}) - m \sum_i \hat{H}(X_i)$$

- Decomposable score:
 - □ Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!

$$Score(G:D) = \sum_{i=1}^{n} FamScore(X_i | \mathbf{Pa}_{X_i}:D)$$

10-708 - Carlos Guestrin 2006-2008

Structure learning for general graphs

In a tree, a node only has one parent

Theorem:

- □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - ☐ (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 - Carlos Guestrin 2006-2008

Understanding score decomposition

This example

Coherence

Paintil SCOD

Score (G:D)

Score (G:

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - □ Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - □ Clever tricks in reading

10-708 - Carlos Guestrin 2006-200

11

What you need to know about learning BN structures

- Decomposable scores
 - □ Data likelihood
 - □ Information theoretic interpretation
 - Bayesian
 - □ BIC approximation
- Priors
 - $\hfill \square$ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(Nk+1))
- Search techniques
 - Search through orders
 - Search through structures
- Bayesian model averaging

10-708 - Carlos Guestrin 2006-2008

1:

Inference is #P-complete, hopeless?

- Exploit structure!
- Inference is hard in general, but easy for many (real-world relevant) BN structures

one key property a low tree width v graphs others, r.g., associative potentials

Complexity for other inference questions

- Probabilistic inference
 - □ general graphs:
 - □ poly-trees and low tree-width: polynomial
- Approximate probabilistic inference

 □ Absolute error: | P(x) P(x) | ≤ E E NP-hard for any E < 0.5

 □ Relative error: | P(x) < 1+E E NP-hard fore any E > 0

 | -E ≤ P(x) < 1+E E NP-hard fore any E > 0
- Most probable explanation (MPE)
 - □ general graphs: NP- complete
 - poly-trees and low tree-width: polynomial
- Maximum a posteriori (MAP)
 - □ general graphs: Np P- complete
 - □ poly-trees and low tree-width: NP-hark

Inference in BNs hopeless?

- In general, yes!
 - □ Even approximate!
- In practice
 - □ Exploit structure
 - ☐ Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference
 - □ Approximate inference later this semester

10-708 - Carlos Guestrio 2006-2008

21

General probabilistic inference

Query: $P(X \mid e)$ Using def. of cond. prob.: $P(X \mid e) = \frac{P(X,e)}{P(e)}$ Normalization: $P(X \mid e) \propto P(X,e)$ Normalization: $P(X \mid e) \propto P(X,e)$ Proposition: $P(X \mid e) \propto P(X,e)$

Probabilistic inference example

