Structure Learning (The Good), The Bad, The Ugly
 A little inference too...

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
October 8 ${ }^{\text {th }}, 2008$

Decomposable score

- Log data likelihood

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(X_{i}, \mathbf{P a}_{X_{i}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)
$$

- Decomposable score:
\square Decomposes over families in BN (node and its parents)
\square Will lead to significant computational efficiency!!!
$\square \operatorname{Score}(G: \underset{\sim}{D})=\hat{\sum}_{\mathrm{E}} \operatorname{FamScore}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{P a}_{\mathrm{xi}_{\mathrm{i}}}: D\right)$ for MLE FamScore $\left.\left(X_{i} \mid P_{a_{i}}: 1\right)\right)=m \tilde{I}\left(X_{i} P_{a_{i}}\right)-m \hat{H}\left(X_{i}\right)$

Chow-Liu tree learning algorithm 1

- For each pair of variables X_{i}, X_{j}
\square Compute empirical distribution:

$$
\widehat{P}\left(x_{i}, x_{j}\right) \stackrel{\text { MLE }}{=} \frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

\square Compute mutual information:

$\widehat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \hat{P}\left(x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j}\right)}{\hat{P}\left(x_{i}\right) \hat{P}\left(x_{j}\right)}$

- Define a graph
\square Nodes $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \quad \mathrm{W}_{\mathrm{ij}}$
\square Edge (i,j) gets weight $\hat{I}\left(X_{i}, X_{j}\right)$
find maximum Spanning tree

Maximum likelihood score overfits!

$\uparrow \log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(X_{i}, \mathbf{P a}_{X_{i}, \mathcal{G}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)$

- Information never hurts: the more parents $9 I\left(x_{i}, P_{a} x_{i}\right)=H\left(x_{i}\right)-H\left(X_{i} \mid P_{a} x_{i}\right)$

$$
H(A \mid B) \leqslant H(A \mid C) \quad C \subseteq B
$$

$I\left(X_{i}\right.$, Pax $\left._{i}\right)$

- Adding a parent always increases score!!!

MLE \rightarrow
complete Graph

Bayesian score

Prior distributions:
Over structures
Over parameters of a structure
Posterior over structurespgiven data:

- Resin) - \$(U)

$$
=\int_{\theta_{G}} P\left(D \mid G, \theta_{G}\right) P\left(\theta_{G} \mid G\right) P(G) d \theta_{G}
$$

$$
+ \text { constant } \leftarrow \log P(D)
$$

Bayesian learning for multinomial

- What if you have a k sided coin???
mi $\in \#$ observations
- Likelihood function if multinomial: of class, value
$\square P\left(D \mid \theta_{1}, \ldots \theta_{k}\right)=\theta_{1}^{m_{1}} \theta_{2}^{m_{2}} \ldots \theta_{k}^{m_{k}}$
$\square \theta_{i}=1, \theta_{i} \geqslant 0$
- Conjugate prior for multinomial is Dirichlet:
$\square \theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \sim \prod_{i} \theta_{i}^{\alpha_{i}-1}$
- Observe m data points, m_{i} from assignment i , posterior:
$P\left(\theta_{1} \ldots \theta_{n} \mid m_{1} \ldots m_{k}\right) \propto P\left(m_{1} \ldots m_{k}\left|\theta_{1} \ldots \theta_{k}\right| P(\theta)\right.$

$$
\equiv \operatorname{Dirichlet~}\left(\alpha_{1}+m_{1}, \alpha_{2}+m_{2}, \ldots, \alpha_{R}+m_{k}\right)
$$

- Prediction:

Global parameter independence, d-separation and local prediction

Independencies in meta BN:

$$
\begin{aligned}
& \text { add prior vars to } \\
& \text { the } B N \\
& P P(\theta)=P\left(\theta_{F}\right) P\left(\theta_{A}\right) P\left(\theta_{s \mid F A}\right) P\left(\theta_{N} \mid S\right) P\left(\theta_{A} \mid s\right)
\end{aligned}
$$

Proposition: For fully observable data D, if prior satisfies global parameter independence, then

$$
\begin{equation*}
P(\theta \mid \mathcal{D})=\prod_{i} P\left(\theta_{X_{i} \mid \mathrm{Pa}_{X_{i}}}\right. \tag{D}
\end{equation*}
$$

prams index. given data

Priors for BN CPTs
(more when we talk about structure learning)

- Consider each CPT: $\mathrm{P}(\mathrm{X} \mid \mathbf{U}=\mathbf{u})$
- Conjugate prior:

- More intuitive:

\square "prior data set" $\underline{\underline{D}}$ ' with $\underline{\underline{\prime}}$ ' equivalent sample size,
\square "prior counts": Count $(X=x, U=u)$ or $m^{\prime} \cdot P^{\prime}(X=x, u=u)$
\square prediction:

$$
\begin{aligned}
& \square \text { prediction: } \\
& E\left[\theta_{x=x}, U=u\right]=\frac{\operatorname{Count}(X=x, U=u)+\operatorname{Count}^{\prime}(X=x, U=u)}{\operatorname{Count}(U=u)+\operatorname{Count}^{\prime}(U=u)}
\end{aligned}
$$

What you need to know about parameter learning

- Bayesian parameter learning:
\square motivation for Bayesian approach
\square Bayesian prediction
\square conjugate priors, equivalent sample size
\square Bayesian learning \Rightarrow smoothing
- Bayesian learning for BN parameters

Global parameter independence
\square Decomposition of prediction according to CPTs
\square Decomposition within a CPT

Bayesian score and model complexity

$\square \log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

- Structure 1: X and Y independent

Score doesn't depend on alpha

- Structure 2: $\mathrm{X} \rightarrow \mathrm{Y}$

$P(Y=t \mid X=t)=0.5+\alpha$ $P(Y=t \mid X=f)=0.5-\alpha$

Data points split between $\mathrm{P}(\mathrm{Y}=\mathrm{t} \mid \mathrm{X}=\mathrm{t})$ and $\mathrm{P}(\mathrm{Y}=\mathrm{t} \mid \mathrm{X}=\mathrm{f})$
For fixed M , only worth it for large α

- Because posterior over parameter will be more diffuse with less data

Bayesian, a decomposable score
 $\log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

- As with last lecture, assume:

Parameter independence

- Also, prior satisfies parameter modularity:
\square If X_{i} has same parents in G and G^{\prime}, then parameters have same prior
- Finally, structure prior $P(G)$ satisfies structure modularity

Product of terms over families
E.g., $P(G) \propto \mathrm{C}^{|G|}$

- Bayesian score decomposes along families!

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
\square In the limit, we can forget prior!
Theorem: for Dirichlet prior, and a BN with $\operatorname{Dim}(G)$ independent parameters, as $\mathrm{m} \rightarrow \infty$:
$\log P(D \mid \mathcal{G})=\log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\log m}{2} \operatorname{Dim}(\mathcal{G})+O(1)$

BIC approximation, a decomposable score

- BIC: $\operatorname{Score}_{\mathrm{BIC}}(\mathcal{G}: D)=\log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\log m}{2} \operatorname{Dim}(\mathcal{G})$
- Using information theoretic formulation:
$\operatorname{Score}_{\mathrm{BIC}}(\mathcal{G}: D)=m \sum_{i} \hat{I}\left(X_{i}, \mathrm{~Pa}_{X_{i}, \mathcal{G}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)-\frac{\log m}{2} \sum_{i} \operatorname{Dim}\left(P\left(X_{i} \mid \mathrm{Pa}_{X_{i}, \mathcal{G}}\right)\right)$

Consistency of BIC and Bayesian scores

Consistency is limiting behavior, says nothing about finite sample size!!!

- A scoring function is consistent if, for true model \mathcal{G}^{*}, as $m \rightarrow \infty$, with probability 1
G^{*} maximizes the score
All structures not l-equivalent to G^{*} have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?

K2 prior: fix an $\alpha, \mathrm{P}\left(\theta_{x_{\mathrm{X}} \mathrm{Pax}}\right)=\operatorname{Dirichlet}(\alpha, \ldots, \alpha)$
$\square K 2$ is "inconsistent"

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Represent with a BN
Usually independent (product of marginals)

BDe prior:

- Has "consistency property":

Score equivalence

- If G and G ' are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:

If $P(G)$ assigns same prior to l-equivalent structures (e.g., edge counting) and parameter prior is dirichlet
\square then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

Chow-Liu for Bayesian score

- Edge weight $\mathrm{w}_{\mathrm{X}_{\mathrm{j}} \rightarrow \mathrm{X}_{\mathrm{i}}}$ is advantage of adding X_{j} as parent for X_{i}

Now have a directed graph, need directed spanning forest
\square Note that adding an edge can hurt Bayesian score - choose forest not tree
\square Maximum spanning forest algorithm works

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:

The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d \geq 2$

- Most structure learning approaches use heuristics
\square Exploit score decomposition
(Quickly) Describe two heuristics that exploit decomposition in different ways

Announcements

- Recitation tomorrow
\square Don't miss it!!! ©

Fixed variable order 1

- Pick a variable order
e.g., X_{1}, \ldots, X_{n}
- X_{i} can only pick parents in
$\left\{X_{1}, \ldots, X_{i-1}\right\}$
Any subset
Acyclicity guaranteed!
- Total score = sum score of each node

Fixed variable order 2

- Fix max number of parents to k
- For each i in order

Pick $\mathrm{Pa}_{\mathrm{Xi}} \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$

- Exhaustively search through all possible subsets
- $\mathrm{Pa}_{\mathrm{Xi}}$ is maximum $\mathrm{U} \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ FamScore $\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{U}: D\right)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
\square E.g., try switching pairs of variables in order
\square If neighboring vars in order are switched, only need to recompute score for this pair
- $\mathrm{O}(\mathrm{n})$ speed up per iteration

Some experiments

Alarm network

Order search versus graph search

- Order search advantages
\square For fixed order, optimal BN - more "global" optimization
Space of orders much smaller than space of graphs
- Graph search advantages

Not restricted to k parents

- Especially if exploiting CPD structure, such as CSI

Cheaper per iteration
\square Finer moves within a graph

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures

Similar to averaging over parameters $\log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

- Inference for structure averaging is very hard!!!

Clever tricks in reading

What you need to know about learning BN structures

- Decomposable scores
\square Data likelihood
\square Information theoretic interpretation
\square Bayesian
\square BIC approximation
- Priors
\square Structure and parameter assumptions
\square BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in $\mathrm{O}\left(\mathrm{N}^{k+1}\right)$)
- Search techniques
\square Search through orders
\square Search through structures
- Bayesian model averaging

Complexity of conditional probability queries 1

- How hard is it to compute $\mathrm{P}(\mathrm{X} \mid \mathrm{E}=\mathrm{e})$?

Reduction - 3-SAT
$\left(\bar{X}_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\bar{X}_{2} \vee X_{3} \vee X_{4}\right) \wedge \ldots$

Complexity of conditional probability queries 2

- How hard is it to compute $\mathrm{P}(\mathrm{X} \mid \mathrm{E}=\mathbf{e})$?

At least NP-hard, but even harder!

Inference is \#P-complete, hopeless?

- Exploit structure!
- Inference is hard in general, but easy for many (real-world relevant) BN structures

Complexity for other inference questions

- Probabilistic inference
general graphs:
\square poly-trees and low tree-width:
- Approximate probabilistic inference
\square Absolute error:
\square Relative error:
■ Most probable explanation (MPE)
general graphs:
\square poly-trees and low tree-width:
- Maximum a posteriori (MAP)
\square general graphs:
\square poly-trees and low tree-width:

Inference in BNs hopeless?

- In general, yes!
\square Even approximate!
- In practice
\square Exploit structure
Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference

Approximate inference later this semester

