

Decomposable score

- Log data likelihood
$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(X_{i}, \mathbf{P a}_{X_{i}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)$
- Decomposable score:
\square Decomposes over families in BN (node and its parents)
\square Will lead to significant computational efficiency!!!
$\square \operatorname{Score}(G: \underset{\sim}{D})=\hat{\sum}_{\mathrm{i}} \operatorname{FamScore}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{P a}_{\mathrm{xi}_{\mathrm{i}}}: D\right)$ for MLE FamScone $\left.\left(X_{i} \mid P_{a x_{i}}: 1\right)\right)=m \hat{I}\left(X_{i} P_{x_{i}}\right)-m \hat{H}\left(X_{i}\right)$

Chow-Liu tree learning algorithm 1

- For each pair of variables X_{i}, X_{j}
\square Compute empirical distribution:

$$
\widehat{P}\left(x_{i}, x_{j}\right) \stackrel{\text { MLE }}{=} \frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

Compute mutual information:

$\widehat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \widehat{P}\left(x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j}\right)}{\hat{P}\left(x_{i}\right) \hat{P}\left(x_{j}\right)}$

- Define a graph
\square Nodes $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \quad \mathrm{W}_{\mathrm{ij}}$
\square Edge (i, j) gets weight $\hat{I}\left(X_{i}, X_{j}\right)$
find maximum Spanning tree

Chow-Liu tree learning algorithm 2

$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$

- Optimal tree BN

Compute maximum weight spanning tree
Directions in BN: pick any node as root, breadth-first -search defines directions
using Chow-Lin
OPTIMAL tara BN

\longrightarrow

$$
\begin{aligned}
& \Rightarrow \text { I equivalent } \\
& \Rightarrow \text { pick any }
\end{aligned}
$$

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN)
[Friedman et al. '97]
\square Naïve Bayes model overcounts, because correlation between features not considered
\square Same as Chow-Liu, but score edges with:
$\hat{I}\left(X_{i}, X_{j} \mid C\right)=\sum_{c, x_{i}, x_{j}} \hat{P}\left(c, x_{i}, x_{j}\right) \log \frac{\widehat{P}\left(x_{i}, x_{j} \mid c\right)}{\hat{P}\left(x_{i} \mid c\right) \hat{P}\left(x_{j} \mid c\right)}$

SCORE:
$I \psi^{c}(, \phi)+I\left(C_{1} x_{1}\right)+$
$I\left(x_{2},\left(x_{1}\right)+I \psi_{3},\left(x_{2}\right)\right.$
$+I\left(x_{4}\left(x_{2}\right)\right.$
$\left.+I\left(x_{4}, c_{x}\right)_{2}\right)$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
[Chechetka \& Guestrin '07]
But, O($\mathrm{n}^{2 \mathrm{k}+6}$)

What you need to know about learning BN structures so far

- Decomposable scores
\square Maximum likelihood
\square Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in $\mathrm{O}\left(\mathrm{N}^{2 \mathrm{k}+6}\right)$)

Maximum likelihood score overfits!

$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(X_{i}, \mathbf{P a}_{X_{i}, \mathcal{G}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)$

- Information never hurts:

■ Adding a parent always increases score!!!

Bayesian score

- Prior distributions:

Over structures
Over parameters of a structure

- Posterior over structures given data:
$\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G})+\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

Can we really trust MLE?

- What is better?
$\square 3$ heads, 2 tails
$\square 30$ heads, 20 tails
$\square 3 \times 10^{23}$ heads, 2×10^{23} tails

- Many possible answers, we need distributions over possible parameters

Bayesian Learning

- Use Bayes rule:
$P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}$
- Or equivalently:
$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Bayesian Learning for Thumbtack

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

- Likelihood function is simply Binomial:

$$
P(\mathcal{D} \mid \theta)=\theta^{m_{H}}(1-\theta)^{m_{T}}
$$

- What about prior?
\square Represent expert knowledge
\square Simple posterior form
- Conjugate priors:
\square Closed-form representation of posterior (more details soon)
\square For Binomial, conjugate prior is Beta distribution

Beta prior distribution - $P(\theta)$

$$
P(\theta)=\frac{\theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}-1}}{B\left(\alpha_{H}, \alpha_{T}\right)} \sim \operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)
$$

- Likelihood function: $\quad P(\mathcal{D} \mid \theta)=\theta^{m_{H}}(1-\theta)^{m_{T}}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Posterior distribution

- Prior: $\operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)$
- Data: m_{H} heads and m_{T} tails
- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

Conjugate prior

- Prior: $\operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)$
- Data: m_{H} heads and m_{T} tails (binomial likelihood)
- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

- Given likelihood function $P(D \mid \theta)$
- (Parametric) prior of the form $\mathrm{P}(\theta \mid \alpha)$ is conjugate to likelihood function if posterior is of the same parametric family, and can be written as:
$\square \mathrm{P}\left(\theta \mid \alpha^{\prime}\right)$, for some new set of parameters α^{\prime}

Using Bayesian posterior

- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

- Bayesian inference:
\square No longer single parameter:

$$
E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
$$

\square Integral is often hard to compute

Bayesian prediction of a new coin flip

- Prior:
- Observed m_{H} heads, m_{T} tails, what is probability of $m+1$ flip is heads?

Asymptotic behavior and equivalent sample size

- Beta prior equivalent to extra thumbtack flips:

$$
E[\theta]=\frac{m_{H}+\alpha_{H}}{m_{H}+\alpha_{H}+m_{T}+\alpha_{T}}
$$

- As $m \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!
- Equivalent sample size:
\square Prior parameterized by α_{H}, α_{T}, or
\square m' (equivalent sample size) and α
$E[\theta]=\frac{m_{H}+\alpha m^{\prime}}{m_{H}+m_{T}+m^{\prime}}$

Bayesian learning corresponds to

 smoothing$E[\theta]=\frac{m_{H}+\alpha m^{\prime}}{m_{H}+m_{T}+m^{\prime}}$

- $\mathrm{m}=0 \Rightarrow$ prior parameter
- $\mathrm{m} \rightarrow \infty \Rightarrow \mathrm{MLE}$

Bayesian learning for multinomial

- What if you have a k sided coin???
- Likelihood function if multinomial:
\square
- Conjugate prior for multinomial is Dirichlet:
$\square \theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \sim \prod_{i} \theta_{i}^{\alpha_{i}-1}$
- Observe m data points, m_{i} from assignment i , posterior:
- Prediction:

Bayesian learning for two-node BN

- Parameters $\theta_{\mathrm{X}}, \theta_{\mathrm{Y} \mid \mathrm{X}}$
- Priors:
$\square \mathrm{P}\left(\theta_{\mathrm{x}}\right)$:
$\square \mathrm{P}\left(\theta_{Y \mid X}\right):$

Global parameter independence, d-separation and local prediction

- Independencies in meta BN:

Proposition: For fully observable data D, if prior satisfies global parameter independence, then
$P(\theta \mid \mathcal{D})=\prod_{i} P\left(\theta_{X_{i} \mid \mathrm{Pa}_{X_{i}}}\right.$
D)

Within a CPT

- Meta BN including CPT parameters:
- Are $\theta_{\mathrm{Y} \mid \mathrm{X}=\mathrm{t}}$ and $\theta_{\mathrm{Y} \mid \mathrm{X}=\mathrm{f}}$ d-separated given D ?
- Are $\theta_{Y \mid X=t}$ and $\theta_{Y \mid X=f}$ independent given D ?
\square Context-specific independence!!!
- Posterior decomposes:

Priors for BN CPTs

(more when we talk about structure learning)

- Consider each CPT: $\mathrm{P}(\mathrm{X} \mid \mathrm{U}=\mathbf{u})$
- Conjugate prior:
$\square \operatorname{Dirichlet}\left(\alpha_{X=1 \mid \mathrm{U}=\mathrm{u}}, \ldots, \alpha_{\mathrm{X}=\mathrm{k} \mid \mathrm{U}=\mathrm{u}}\right)$
- More intuitive:
"prior data set" D ' with m ' equivalent sample size
"prior counts":
\square prediction:

What you need to know about parameter learning

- Bayesian parameter learning:
motivation for Bayesian approachBayesian prediction
\square conjugate priors, equivalent sample sizeBayesian learning \Rightarrow smoothing
- Bayesian learning for BN parameters
\square Global parameter independenceDecomposition of prediction according to CPTs
\square Decomposition within a CPT

Announcements

- Project description is out on class website:
\square Individual or groups of two only
\square Suggested projects on the class website, or do something related to your research (preferable)
- Must be something you started this semester
- The semester goes really quickly, so be realistic (and ambitious ©)

Must be related to Graphical Models! :

- Project deliverables:
\square one page proposal due Wednesday (10/8)
\square 5-page milestone report Nov 3rd in class
\square Poster presentation on Dec. $1^{\text {st }}, 3-6 p m$ in NSH Atrium
\square Write up, 8-pages, due Dec 3rd by 3pm by email to instructors (no late days)
\square All write ups in NIPS format (see class website), page limits are strict
- Objective:
\square Explore and apply concepts in probabilistic graphical models
\square Doing a fun project!

Bayesian score and model complexity

$\square \quad \log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

- Structure 1: X and Y independent

Score doesn't depend on alpha

- Structure 2: $\mathrm{X} \rightarrow \mathrm{Y}$

$P(Y=t \mid X=t)=0.5+\alpha$ $P(Y=t \mid X=f)=0.5-\alpha$

Data points split between $\mathrm{P}(\mathrm{Y}=\mathrm{t} \mid \mathrm{X}=\mathrm{t})$ and $\mathrm{P}(\mathrm{Y}=\mathrm{t} \mid \mathrm{X}=\mathrm{f})$
For fixed M , only worth it for large α

- Because posterior over parameter will be more diffuse with less data

Bayesian, a decomposable score

- $\quad \log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$
- As with last lecture, assume:

Local and global parameter independence

- Also, prior satisfies parameter modularity:
\square If X_{i} has same parents in G and G^{\prime}, then parameters have same prior
- Finally, structure prior $P(G)$ satisfies structure modularity

Product of terms over families
E.g., $P(G) \propto \mathrm{C}^{|G|}$

- Bayesian score decomposes along families!

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
\square In the limit, we can forget prior!
Theorem: for Dirichlet prior, and a BN with $\operatorname{Dim}(G)$ independent parameters, as $\mathrm{m} \rightarrow \infty$:
$\log P(D \mid \mathcal{G})=\log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\log m}{2} \operatorname{Dim}(\mathcal{G})+O(1)$

BIC approximation, a decomposable score

- BIC: $\operatorname{Score}_{\operatorname{BIC}}(\mathcal{G}: D)=\log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\log m}{2} \operatorname{Dim}(\mathcal{G})$

■ Using information theoretic formulation:
$\operatorname{Score}_{\mathrm{BIC}}(\mathcal{G}: D)=m \sum_{i} \hat{I}\left(X_{i}, \operatorname{Pa}_{X_{i}, \mathcal{G}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)-\frac{\log m}{2} \sum_{i} \operatorname{Dim}\left(P\left(X_{i} \mid \operatorname{Pa}_{X_{i}, \mathcal{G}}\right)\right)$

Consistency of BIC and Bayesian scores

Consistency is limiting behavior, says nothing about finite sample size!!!

- A scoring function is consistent if, for true model \mathcal{G}^{*}, as $m \rightarrow \infty$, with probability 1
G^{*} maximizes the score
\square All structures not l-equivalent to G^{*} have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?

K2 prior: fix an $\alpha, \mathrm{P}\left(\theta_{x_{\mathrm{X}} \mathrm{Pax}}\right)=\operatorname{Dirichlet}(\alpha, \ldots, \alpha)$
$\square K 2$ is "inconsistent"

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Represent with a BN
\square Usually independent (product of marginals)

- BDe prior:
- Has "consistency property":

