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Decomposable score 

  Log data likelihood 

  Decomposable score: 
 Decomposes over families in BN (node and its parents) 
 Will lead to significant computational efficiency!!! 
 Score(G : D) = ∑i FamScore(Xi|PaXi : D) 
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Chow-Liu tree learning algorithm 1  

  For each pair of variables Xi,Xj 
  Compute empirical distribution: 

  Compute mutual information: 

  Define a graph 
  Nodes X1,…,Xn 
  Edge (i,j) gets weight 
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Chow-Liu tree learning algorithm 2 

  Optimal tree BN 
 Compute maximum weight

 spanning tree 
 Directions in BN: pick any

 node as root, breadth-first
-search defines directions 
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Can we extend Chow-Liu 1 

  Tree augmented naïve Bayes (TAN)
 [Friedman et al. ’97]  
  Naïve Bayes model overcounts, because

 correlation between features not
 considered 

  Same as Chow-Liu, but score edges with: 
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Can we extend Chow-Liu 2 

  (Approximately learning) models
 with tree-width up to k 
  [Chechetka & Guestrin ’07] 
 But, O(n2k+6) 
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What you need to know about
 learning BN structures so far 

  Decomposable scores 
 Maximum likelihood 
  Information theoretic interpretation 

  Best tree (Chow-Liu) 
  Best TAN 
  Nearly best k-treewidth (in O(N2k+6)) 
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Maximum likelihood score overfits! 

  Information never hurts: 

  Adding a parent always increases score!!! 
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Bayesian score 

  Prior distributions: 
 Over structures 
 Over parameters of a structure 

  Posterior over structures given data: 
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m 

Can we really trust MLE? 

  What is better? 
  3 heads, 2 tails 

  30 heads, 20 tails 

  3x1023 heads, 2x1023 tails 

  Many possible answers, we need distributions over possible
 parameters 
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Bayesian Learning 

  Use Bayes rule: 

  Or equivalently: 
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Bayesian Learning for Thumbtack 

  Likelihood function is simply Binomial: 

  What about prior? 
  Represent expert knowledge 
  Simple posterior form 

  Conjugate priors: 
  Closed-form representation of posterior (more details soon) 
  For Binomial, conjugate prior is Beta distribution 
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Beta prior distribution – P(θ) 

  Likelihood function: 
  Posterior: 
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Posterior distribution 

  Prior: 
  Data: mH heads and mT tails 

  Posterior distribution:  
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Conjugate prior 

  Given likelihood function P(D|θ) 

  (Parametric) prior of the form P(θ|α) is conjugate to
 likelihood function if posterior is of the same parametric
 family, and can be written as:  
  P(θ|α’), for some new set of parameters α’ 

  Prior: 
  Data: mH heads and mT tails (binomial likelihood) 

  Posterior distribution:  
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Using Bayesian posterior 

  Posterior distribution:  

  Bayesian inference: 
  No longer single parameter: 

  Integral is often hard to compute 
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Bayesian prediction of a
 new coin flip 

  Prior:  
  Observed mH heads, mT tails, what is

 probability of m+1 flip is heads? 
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Asymptotic behavior and equivalent
 sample size 

  Beta prior equivalent to extra
 thumbtack flips: 
    

  As m → 1, prior is “forgotten” 
  But, for small sample size, prior

 is important! 
  Equivalent sample size: 

  Prior parameterized by αH,αT, or 
  m’ (equivalent sample size) and α
    

Fix m’, change α

Fix α, change m’ 
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Bayesian learning corresponds to
 smoothing 

  m=0 ) prior parameter 
  m!1 ) MLE  

m 
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Bayesian learning for multinomial 

  What if you have a k sided coin??? 
  Likelihood function if multinomial: 

    
    

  Conjugate prior for multinomial is Dirichlet: 
    

  Observe m data points, mi from assignment i, posterior: 

  Prediction: 
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Bayesian learning for two-node BN 

  Parameters θX, θY|X 
  Priors: 

 P(θX): 
 P(θY|X): 
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Very important assumption on prior: 
Global parameter independence 

  Global parameter
 independence: 
 Prior over parameters is product

 of prior over CPTs 
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Global parameter independence,
 d-separation and local prediction 

Flu Allergy 

Sinus 

Headache Nose 

  Independencies in meta BN: 

  Proposition: For fully observable data
 D, if prior satisfies global parameter
 independence, then    
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Within a CPT 
  Meta BN including CPT parameters: 

  Are θY|X=t and θY|X=f d-separated given D? 
  Are θY|X=t and θY|X=f independent given D? 

  Context-specific independence!!! 
  Posterior decomposes: 
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Priors for BN CPTs  
(more when we talk about structure learning) 

  Consider each CPT: P(X|U=u) 
  Conjugate prior: 

 Dirichlet(αX=1|U=u,…, αX=k|U=u) 
  More intuitive: 

  “prior data set” D’ with m’ equivalent sample size 
  “prior counts”: 
 prediction: 
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An example 
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What you need to know about
 parameter learning 

  Bayesian parameter learning: 
 motivation for Bayesian approach 
 Bayesian prediction 
 conjugate priors, equivalent sample size 
 Bayesian learning ) smoothing  

  Bayesian learning for BN parameters 
 Global parameter independence 
 Decomposition of prediction according to CPTs 
 Decomposition within a CPT 
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Announcements 
  Project description is out on class website: 

  Individual or groups of two only 
  Suggested projects on the class website, or do something related to your

 research (preferable)  
  Must be something you started this semester 
  The semester goes really quickly, so be realistic (and ambitious ) 

 Must be related to Graphical Models!  

  Project deliverables: 
  one page proposal due Wednesday (10/8) 
  5-page milestone report Nov 3rd in class 
  Poster presentation on Dec. 1st, 3-6pm in NSH Atrium 
  Write up, 8-pages, due Dec 3rd by 3pm by email to instructors (no late days) 
  All write ups in NIPS format (see class website), page limits are strict 

  Objective: 
  Explore and apply concepts in probabilistic graphical models 
  Doing a fun project! 
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Bayesian score and model complexity 

X 

Y 

True model: 

P(Y=t|X=t) = 0.5 + α
P(Y=t|X=f) = 0.5 - α 

  Structure 1: X and Y independent 

  Score doesn’t depend on alpha 
  Structure 2: X ! Y 

  Data points split between P(Y=t|X=t) and P(Y=t|X=f) 
  For fixed M, only worth it for large α

  Because posterior over parameter will be more diffuse with less data 
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Bayesian, a decomposable score 

  As with last lecture, assume: 
  Local and global parameter independence 

  Also, prior satisfies parameter modularity: 
  If Xi has same parents in G and G’, then parameters have same prior 

  Finally, structure prior P(G) satisfies structure modularity 
  Product of terms over families 
  E.g., P(G) / c|G| 

  Bayesian score decomposes along families! 
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BIC approximation of Bayesian score 

  Bayesian has difficult integrals 
  For Dirichlet prior, can use simple Bayes

 information criterion (BIC) approximation 
  In the limit, we can forget prior! 
 Theorem: for Dirichlet prior, and a BN with Dim(G)

 independent parameters, as m!1:  
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BIC approximation, a
 decomposable score 

  BIC: 

  Using information theoretic formulation: 
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Consistency of BIC  and Bayesian
 scores 

  A scoring function is consistent if, for true model G*,
 as m!1, with probability 1 
 G* maximizes the score 
 All structures not I-equivalent to G* have strictly lower score 

  Theorem: BIC score is consistent 
  Corollary: the Bayesian score is consistent  
  What about maximum likelihood score? 

Consistency is limiting behavior, says nothing  
about finite sample size!!! 
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Priors for general graphs 

  For finite datasets, prior is important! 
  Prior over structure satisfying prior modularity 

  What about prior over parameters, how do we represent it? 
  K2 prior: fix an α, P(θXi|PaXi) = Dirichlet(α,…, α)  
  K2 is “inconsistent” 
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BDe prior 

  Remember that Dirichlet parameters analogous to “fictitious
 samples” 

  Pick a fictitious sample size m’ 
  For each possible family, define a prior distribution P(Xi,PaXi) 

  Represent with a BN 
  Usually independent (product of marginals) 

  BDe prior:  

  Has “consistency property”:  


