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Param. Learning (MLE) 

Structure Learning 
 The Good 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

October 1st, 2008 

Readings: 
 K&F: 16.1, 16.2, 17.1, 17.2, 17.3.1, 17.4.1 
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Learning the CPTs 

x(1) 
… 

 x(m) 

Data 
For each discrete variable Xi 
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Learning the CPTs 

x(1) 
… 

 x(m) 

Data 
For each discrete variable Xi 

WHY?????????? 
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Maximum likelihood estimation (MLE) of
 BN parameters – example  
  Given structure, log likelihood of data: 

Flu Allergy 

Sinus 

Nose 
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Maximum likelihood estimation (MLE) of
 BN parameters – General case 
  Data: x(1),…,x(m) 
  Restriction: x(j)[PaXi] ! assignment to PaXi in x(j) 
  Given structure, log likelihood of data: 
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Taking derivatives of MLE of BN
 parameters – General case 
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General MLE for a CPT 
  Take a CPT: P(X|U) 
  Log likelihood term for this CPT 

  Parameter θX=x|U=u : 
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Where are we with learning BNs? 

  Given structure, estimate parameters 
 Maximum likelihood estimation 
 Later Bayesian learning 

  What about learning structure? 



5 

10-708 – ©Carlos Guestrin 2006-2008 9 

Learning the structure of a BN 
  Constraint-based approach 

 BN encodes conditional independencies 
 Test conditional independencies in data 
 Find an I-map 

  Score-based approach 
 Finding a structure and parameters is a

 density estimation task 
 Evaluate model as we evaluated parameters 

  Maximum likelihood 
  Bayesian  
  etc.  

Data 

<x1
(1),…,xn

(1)> 
… 

<x1
(m),…,xn

(m)> 

Flu Allergy 

Sinus 

Headache Nose 

Learn structure and 
param

eters 
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Remember: Obtaining a P-map? 

  Given the independence assertions that are true for P 
  Obtain skeleton 
  Obtain immoralities 

  From skeleton and immoralities, obtain every (and any)
 BN structure from the equivalence class 

  Constraint-based approach: 
 Use Learn PDAG algorithm 
 Key question: Independence test 
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Score-based approach 

Data 

<x1
(1),…,xn

(1)> 
… 

<x1
(m),…,xn

(m)> 

Flu Allergy 

Sinus 

Headache Nose 

Possible structures Score structure 
Learn parameters 
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Information-theoretic interpretation
 of maximum likelihood 

  Given structure, log likelihood of data: Flu Allergy 

Sinus 

Headache Nose 
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Information-theoretic interpretation
 of maximum likelihood 2 

  Given structure, log likelihood of data: Flu Allergy 

Sinus 

Headache Nose 
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Decomposable score 

  Log data likelihood 

  Decomposable score: 
 Decomposes over families in BN (node and its parents) 
 Will lead to significant computational efficiency!!! 
 Score(G : D) = ∑i FamScore(Xi|PaXi : D) 
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Announcements 
  Recitation tomorrow 

  Don’t miss it! 

  HW2 
  Out today 
  Due in 2 weeks 

  Projects!!!  
  Proposals due Oct. 8th in class 
  Individually or groups of two 
  Details on course website 
  Project suggestions will be up soon!!! 
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BN code release!!!! 
  Pre-release of a C++ library for probabilistic inference and learning 

  Features: 
  basic datastructures (random variables, processes, linear algebra) 
  distributions (Gaussian, multinomial, ...) 
  basic graph structures (directed, undirected) 
  graphical models (Bayesian network, MRF, junction trees) 
  inference algorithms (variable elimination, loopy belief propagation, filtering) 

  Limited amount of learning (IPF, Chow Liu, order-based search) 

  Supported platforms: 
  Linux (tested on Ubuntu 8.04) 
  MacOS X (tested on 10.4/10.5) 
  limited Windows support 

  Will be made available to the class early next week. 
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How many trees are there? 
Nonetheless – Efficient optimal algorithm finds best tree 

10-708 – ©Carlos Guestrin 2006-2008 18 

Scoring a tree 1: I-equivalent trees 
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Scoring a tree 2: similar trees 
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Chow-Liu tree learning algorithm 1  

  For each pair of variables Xi,Xj 
  Compute empirical distribution: 

  Compute mutual information: 

  Define a graph 
  Nodes X1,…,Xn 
  Edge (i,j) gets weight 
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Chow-Liu tree learning algorithm 2 

  Optimal tree BN 
 Compute maximum weight

 spanning tree 
 Directions in BN: pick any

 node as root, breadth-first
-search defines directions 
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Can we extend Chow-Liu 1 

  Tree augmented naïve Bayes (TAN)
 [Friedman et al. ’97]  
  Naïve Bayes model overcounts, because

 correlation between features not
 considered 

  Same as Chow-Liu, but score edges with: 
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Can we extend Chow-Liu 2 

  (Approximately learning) models
 with tree-width up to k 
  [Chechetka & Guestrin ’07] 
 But, O(n2k+6) 
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What you need to know about
 learning BN structures so far 

  Decomposable scores 
 Maximum likelihood 
  Information theoretic interpretation 

  Best tree (Chow-Liu) 
  Best TAN 
  Nearly best k-treewidth (in O(N2k+6)) 


