One of the most exciting developments in machine learning (knowledge representation, AI, EE, Stats,...) in the last two (or three, or more) decades...

My expectations are already high... ©

Speech recognition

Hidden Markov models and their generalizations

Tracking and robot localization

Kalman Filters

[Fox et al.]

[Funiak et al.]

Images and text data

Hierarchical Bayesian models

[Barnard et al.]

Structured data (text, webpages,...)

Probabilistic relational models

many many more...

Syllabus

Covers a wide range of Probabilistic Graphical

 Models topics - from basic to state-of-the-art - You will learn about the methods you heard about:\square Bayesian networks, Markov networks, factor graphs, conditional random fields, decomposable models, junction trees, parameter learning, structure learning, semantics, exact inference, variable elimination, context-specific independence, approximate inference, sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing data, EM, Chow-Liu, structure search, IPF for tabular MRFs, Gaussian and hybrid models, discrete and continuous variables, temporal and template models, hidden Markov Models, Forwards-Backwards, Viterbi, BaumWelch, Kalman filter, linearization, switching Kalman filter, assumed density filtering, DBNs, BK, Relational probabilistic models, Causality,...

- Covers algorithms, theory and applications
- It's going to be fun and hard work :)

Prerequisites

- 10-701 - Machine Learning, especially:
\square Probabilities
- Distributions, densities, marginalization...
\square Basic statistics
- Moments, typical distributions, regression...
- Algorithms
\square Dynamic programming, basic data structures, complexity...
- Programming
\square Matlab will be very useful
- We provide some background, but the class will be fast paced
- Ability to deal with "abstract mathematical concepts"

Review Sessions

- Very useful!

Review material
\square Present background
\square Answer questions
■ Thursdays, 5:00-6:20 in Wean Hall 5409

- First recitation is this Thursday

Review of probabilities \& statistics
■ Sometimes this semester: Especial recitations most likely on Mondays 5:30-7pm
\square Cover special topics that we can't cover in class
\square These are optional, but you are here to learn... ©

- Do we need a Matlab review session?

Staff

- Two Great TAs: Great resource for learning, interact with them!

Amr Ahmed amahmed@cs.cmu.edu,

Dhruv Batra batradhruv@cmu.edu

- Administrative Assistant
\square Michelle Martin
michelle324@cs.cmu.edu, Wean 4619, x8-5527

First Point of Contact for HWs

- To facilitate interaction, a TA will be assigned to each homework question This will be your "first point of contact" for this question
\square But, you can always ask any of us

For e-mailing instructors, always use:
\square 10708-instr@cs.cmu.edu

For announcements, subscribe to:
\square 10708-announce@cs

- https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

We will also use a discussion group:
\square Post your questions, discuss projects, etc
\square Be nice... ©
\square Don't give away any answers... ©
$\square \mathrm{http}: / / g r o u p s . g o o g l e . c o m / g r o u p / 10708-f 08$

Text Books

- Primary: Daphne Koller and Nir Friedman, Structured Probabilistic Models, in preparation. These chapters are part of the course reader. You can purchase one from Michelle Martin
- Secondary: M. I. Jordan, An Introduction to Probabilistic Graphical Models, in preparation. Copies of selected chapters will be made available.

Grading

- 5 homeworks (50\%)

First one goes out next Wednesday!
Homeworks are long and hard $)$

- please, please, please, please, please, please start early!!!

Final project (30\%)
Done individually or in pairs
Details out soon
\square Proposals due October $6^{\text {th }}$
Final (20\%)
Take home, out Dec. $3^{\text {rd }}$
Due Dec. $10^{\text {th }}$ at NOON (hard deadline)

Homeworks

- Homeworks are hard, start early $)$
- Due in the beginning of class
- 3 late days for the semester
- After late days are used up:
\square Half credit within 48 hours
\square Zero credit after 48 hours
- All homeworks must be handed in, even for zero credit
- Late homeworks handed in to Michelle Martin, WEH 4619
- Collaboration

You may discuss the questions
\square Each student writes their own answers
\square Write on your homework anyone with whom you collaborate

- IMPORTANT:
\square We may use some material from previous years or from papers for the homeworks. Unless otherwise specified, please only look at the readings when doing your homework \rightarrow You are taking this advanced graduate class because you want to learn, so this rule is self-enforced :)

Enjoy!

. NO CLASS THIS WEDNESDAY 9/10

- Probabilistic graphical models are having significant impact in science, engineering and beyond
- This class should give you the basic foundation for applying GMs and developing new methods
- The fun begins...

More details???

Representation:
Graphical models represent exponentially large probability distributions compactly
Key concept: Conditional Independence

Inference:

\square What is the probability of X given some observations?What is the most likely explanation for what is happening?What decisions should I make?
Learning:
\square What are the right/good parameters for the model?How do I obtain the structure of the model?

Where do we start?

- From Bayesian networks
- "Complete" BN presentation first
\square Representation
\square Exact inference
\square Learning
\square Only discrete variables for now
- Later in the semester
\square Undirected models
\square Approximate inference
\square Continuous
\square Temporal models
\square And more...
- Class focuses on fundamentals - Understand the foundation and basic concepts

Today

- Probabilities
- Independence
- Two nodes make a BN
- Naïve Bayes
- Should be a review for everyone - Setting up notation for the class

Random variable

- Probability distributions usually defined by events
- Events are complicated - we think about attributes Age, Grade, HairColor
- Random variables formalize attributes:
\square Grade $=A \longrightarrow$ shorthand for event $\left\{\omega \in \Omega: \mathrm{f}_{\text {Grade }}(\omega)=\mathrm{A}\right\}$
- Properties of random vars, X :
$\square \operatorname{Val}(X)=$ possible values of random var X
\square For discrete (categorical): $\sum_{i=1} \ldots|\mathrm{Val}(\mathrm{X})| \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)=1$
\square For continuous: $\int_{x} p(X=x) d x=1$
$\square P(x) \geq 0$

Interpretations of probability A can of worms!

- Frequentists
$P(\alpha)$ is the frequency of α in the limit
\square Many arguments against this interpretation
- What is the frequency of the event "it will rain tomorrow"?
- Subjective interpretation
$\square \mathrm{P}(\alpha)$ is my degree of belief that α will happen
\square What the... does "degree of belief mean?
\square If I say $P(\alpha)=0.8$, then I am willing to bet!!!
- For this class, we (mostly) don't care what camp you are in

Conditional probabilities

- After learning that α is true, how do we feel about β ?
- $P(\beta \mid \alpha)$

Two of the most important rules of the semester: 1. The chain rule

- $P(\alpha \cap \beta)=P(\alpha) P(\beta \mid \alpha)$

■ More generally:
$\square P\left(\alpha_{1} \cap \ldots \cap \alpha_{k}\right)=P\left(\alpha_{1}\right) P\left(\alpha_{2} \mid \alpha_{1}\right) \cdots P\left(\alpha_{k} \mid \alpha_{1} \cap \ldots \cap \alpha_{k-1}\right)$

Two of the most important rules of the semester: 2. Bayes rule

- $P(\alpha \mid \beta)=\frac{P(\beta \mid \alpha) P(\alpha)}{P(\beta)}$
- More generally, external event γ :

$$
P(\alpha \mid \beta \cap \gamma)=\frac{P(\beta \mid \alpha \cap \gamma) P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}
$$

Most important concept:
 a) Independence

- α and β independent, if $P(\beta \mid \alpha)=P(\beta)$
$\square P \rightarrow(\alpha \perp \beta)$
- Proposition: α and β independent if and only if $P(\alpha \cap \beta)=P(\alpha) P(\beta)$

Most important concept: b) Conditional independence

- Independence is rarely true, but conditionally...
- α and β conditionally independent given γ if $P(\beta \mid \alpha \cap \gamma)=P(\beta \mid \gamma)$
$\square P \rightarrow(\alpha \perp \beta \mid \gamma)$

Proposition: $P \rightarrow(\alpha \perp \beta \mid \gamma)$ if and only if $P(\alpha \cap \beta \mid \gamma)=P(\alpha \mid \gamma) P(\beta \mid \gamma)$

Joint distribution, Marginalization

- Two random variables - Grade \& Intelligence
- Marginalization - Compute marginal over single var

Marginalization - The general case

- Compute marginal distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$:

$$
P\left(X_{1}, X_{2}, \ldots, X_{i}\right)=\sum_{x_{i+1}, \ldots, x_{n}} P\left(X_{1}, X_{2}, \ldots, X_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

$$
P\left(X_{i}\right)=\sum_{x_{1}, \ldots, x_{i-1}} P\left(x_{1}, \ldots, x_{i-1}, X_{i}\right)
$$

Basic concepts for random variables

Atomic outcome: assignment $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ to $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$

- Conditional probability: $\mathrm{P}(\mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- Bayes rule: $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=$
- Chain rule:

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{k} \mid X_{1}, \ldots, X_{k-1}\right)
$$

Conditionally independent random variables

- Sets of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$

■ X is independent of Y given Z if

$$
\square P \rightarrow(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z}), \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})
$$

- Shorthand:
\square Conditional independence: $P \rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
\square For $P \rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \emptyset)$, write $\mathbf{P} \rightarrow(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P statisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
$\square P(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})=P(\mathbf{X} \mid \mathbf{Z}) P(\mathbf{Y} \mid \mathbf{Z})$

Properties of independence

- Symmetry:
$\square(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \Rightarrow(\mathbf{Y} \perp \mathbf{X} \mid \mathbf{Z})$
- Decomposition:
$\square(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Weak union:
$\square(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, \mathbf{W})$
- Contraction:
$\square(\mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \&(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
- Intersection:
$\square(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}, \mathbf{Z}) \&(\mathbf{X} \perp \mathbf{W} \mid \mathbf{Y}, \mathbf{Z}) \Rightarrow(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
\square Only for positive distributions!
$\square \mathrm{P}(\alpha)>0, \forall \alpha, \alpha \neq \emptyset$
- Notation: $I(P)$ - independence properties entailed by P

Bayesian networks

- One of the most exciting recent advancements in statistical AI
- Compact representation for exponentially-large probability distributions
- Fast marginalization too
- Exploit conditional independencies

Handwriting recognition 2

Webpage classification 2

Let's start on BNs...

- Consider $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$

Assign probability to each $x_{i} \in \operatorname{Val}\left(X_{i}\right)$
Independent parameters

- Consider $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
\square How many independent parameters if $\left|\operatorname{Val}\left(\mathrm{X}_{\mathrm{i}}\right)\right|=k$?

What if variables are independent?

- What if variables are independent?
$\square\left(X_{i} \perp X_{j}\right), \forall \mathrm{i}, \mathrm{j}$
\square Not enough!!! (See homework 1 ©)
\square Must assume that $(\mathbf{X} \perp \mathbf{Y}), \forall \mathbf{X}, \mathbf{Y}$ subsets of $\left\{X_{1}, \ldots, X_{n}\right\}$
- Can write

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1 \ldots . . n} P\left(X_{i}\right)
$$

- How many independent parameters now?

Conditional parameterization two nodes

- Grade is determined by Intelligence

Conditional parameterization three nodes

- Grade and SAT score are determined by Intelligence
- ($\mathrm{G} \perp \mathrm{S} \mid \mathrm{I}$)

The naïve Bayes model Your first real Bayes Net

- Class variable: C
- Evidence variables: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- assume that $(\mathbf{X} \perp \mathbf{Y} \mid \mathrm{C}), \forall \mathbf{X}, \mathrm{Y}$ subsets of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

What you need to know

- Basic definitions of probabilities
- Independence
- Conditional independence
- The chain rule
- Bayes rule
- Naïve Bayes

Next class

- We've heard of Bayes nets, we've played with Bayes nets, we've even used them in your research
- Next class, we'll learn the semantics of BNs, relate them to independence assumptions encoded by the graph

