Generalized Belief Propagation

Graphical Models - 10708
 Carlos Guestrin

Carnegie Mellon University
November 12 ${ }^{\text {th }}, 2008$

- Numerical problem:

oherenc
\square messages < 1 get multiplied together as we go around the loops

\square numbers can go to zero
\square normalize messages to one:
$\delta_{i \rightarrow j}\left(X_{j}\right)=\frac{1}{Z_{i \rightarrow j}} \sum_{x_{i}} \phi_{i}\left(x_{i}\right) \phi_{i j}\left(x_{i}, X_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(x_{i}\right)$
$\square \mathrm{Z}$ doesn't depend on X_{j}, so doesn't change the answer $i \rightarrow j$
■ Computing node "beliefs" (estimates of probs.):
$b_{i}\left(x_{i}\right)=\hat{P}\left(X_{i}\right)=\frac{1}{Z_{i}} \phi_{i}\left(X_{i}\right) \prod_{k \in \mathcal{N}(i)} \delta_{k \rightarrow i}\left(X_{i}\right)$

Loopy BP in Factor graphs

- \quad From node i to factor j :
$\square \quad F(i)$ factors whose scope includes X_{i}

$$
\delta_{i \rightarrow j}\left(X_{i}\right) \propto \prod_{k \in \mathcal{F}(i)-j} \delta_{k \rightarrow i}\left(X_{i}\right)
$$

- From factor j to node i :
$\square \quad$ Scope $\left[\phi_{j}\right]=Y\left(\left\{X_{i}\right\}\right.$

$$
\delta_{j \rightarrow i}\left(X_{i}\right) \propto \sum_{\underline{\underline{\mathbf{y}}}} \phi_{j}\left(X_{i}, \mathbf{y}\right) \prod_{X_{k} \in \operatorname{Scope}\left[\phi_{j}\right]-X_{i}} \delta_{k \rightarrow j}\left(x_{k}\right)
$$

- Belief:

Node: $P\left(x_{i}\right) \simeq b_{i}\left(x_{i}\right) \alpha$
 ,

Running intersection property

- (Generalized) Running intersection property (RIP)

Cluster graph satisfies RIP if whenever $\mathrm{X} \in \mathbf{C}_{\mathrm{i}}$ and $\mathrm{X} \in \mathbf{C}_{\mathrm{j}}$ then \exists one and only one path from C_{i} to \mathbf{C}_{j} where $\mathrm{X} \in \mathbf{S}_{\mathrm{uv}}$ for every edge (u, v) in the path

Generalized BP on cluster graphs satisfying RIP

\square Assign each factor ϕ to a clique $\alpha(\phi)$, Scope $[\phi] \subseteq \mathbf{C}_{\alpha(\phi)}$
\square Initialize cliques: $\psi_{i}^{0}\left(\mathbf{C}_{i}\right) \propto \prod_{\phi: \alpha(\phi)=i} \phi$
\square Initialize messages: $\delta_{j \rightarrow i}=1$

- While not converged, send messages:

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i j}\right) \propto \sum_{\mathbf{C}_{i}-\mathbf{S}_{i j}} \psi_{i}^{0}\left(\mathbf{C}_{i}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(\mathbf{S}_{i k}\right)
$$

- Belief:

Cluster graph for Loopy BP

Region graphs to the rescue

- Can address generalized cluster graphs that don't satisfy RIP using region graphs:
\square Book: 10.3
- Example in your homework! ©

Revisiting Mean-Fields

$\ln Z=F\left[P_{\mathcal{F}}, Q\right]+D\left(Q \| P_{\mathcal{F}}\right) \quad F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$

- Choice of Q :
- Optimization problem:

$$
\max _{Q} F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+\sum_{j} H_{Q_{j}}\left(X_{j}\right), \quad \forall i, \sum_{x_{i}} Q_{i}\left(x_{i}\right)=1
$$

Announcements

- Recitation tomorrow
- HW5 out soon
- Will not cover relational models this semester Instead, recommend Pedro Domingos' tutorial on Markov Logic
- Markov logic is one example of a relational probabilistic model
- November $14^{\text {th }}$ from $1: 00 \mathrm{pm}$ to $3: 30 \mathrm{pm}$ in Wean 4623

Interpretation of energy functional

- Energy functional: $\quad F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$
- Exact if $\mathrm{P}=\mathrm{Q}: \quad \ln Z=F\left[P_{\mathcal{F}}, Q\right]+D\left(Q \| P_{\mathcal{F}}\right)$
- View problem as an approximation of entropy term:

Entropy of a tree distribution

- Entropy term:
- Joint distribution:
- Decomposing entropy term:
- More generally: $\quad H_{P}(\mathbf{X})=\sum_{(i, j) \in E} H\left(X_{i}, X_{j}\right)-\sum_{i}\left(d_{i}-1\right) H\left(X_{i}\right) . \mathrm{d}_{\mathbf{i}}$ number neighbors of X_{i}

Loopy BP \& Bethe approximation

- Energy functional: $\quad F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$
- Bethe approximation of Free Energy:
\square use entropy for trees, but loopy graphs:
$\tilde{F}\left[P_{\mathcal{F}, Q}\right]=\sum_{(i, j) \in E} E_{b_{i j}}\left[\ln \phi_{i j}\right]+\sum_{(i, j) \in E} H_{b_{i j}}\left(X_{i}, X_{j}\right)-\sum_{i}\left(d_{i}-1\right) H_{b_{i}}\left(X_{i}\right)$
- Theorem: If Loopy BP converges, resulting $b_{i j}$ \& b_{i} are stationary point (usually local maxima) of Bethe Free energy!

GBP \& Kikuchi approximation

What you need to know about GBP

- Spectrum between Loopy BP \& Junction Trees:
\square More computation, but typically better answers
- If satisfies RIP, equations are very simple
- General setting, slightly trickier equations, but not hard
- Relates to variational methods: Corresponds to local optima of approximate version of energy functional

Readings:
K\&F: 10.2, 10.3

Parameter learning in

 Markov netsGraphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
November 12 ${ }^{\text {th }}, 2008$

Learning Parameters of a BN

- Log likelihood decomposes:

$$
\ell(\mathcal{D}: \theta)=\log P(\mathcal{D} \mid \theta)=m \sum_{i} \sum_{x_{i}, \mathbf{P a}_{x_{i}}} \widehat{P}\left(x_{i}, \mathbf{P a}_{x_{i}}\right) \log P\left(x_{i} \mid \mathbf{P a}_{x_{i}}\right)
$$

- Learn each CPT independently
- Use counts

$$
\hat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}
$$

Log Likelihood for MN

- Log likelihood of the data:

Derivative of Log Likelihood for MNs

$\ell \overline{\mathcal{D}}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

Derivative of Log Likelihood for MNs 2

$\hat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}$
$\ell(\mathcal{D}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

Derivative of Log Likelihood for MNs

$\ell(\mathcal{D}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

- Derivative:

$$
\frac{\partial \ell}{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}=\frac{m \hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-\frac{m P_{\mathcal{F}}^{\psi}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}
$$

- Computing derivative requires inference:

- Can optimize using gradient ascent

Common approach
Conjugate gradient, Newton's method,...

- Let's also look at a simpler solution

Iterative Proportional Fitting (IPF)

- $\frac{\partial \ell}{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}=\frac{m \hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-\frac{m P_{\mathcal{F}}^{\psi}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}$
- Setting derivative to zero:
- Fixed point equation:
$\hat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}$

- Iterate and converge to optimal parameters
\square Each iteration, must compute:

What you need to know about learning MN parameters?

- BN parameter learning easy
- MN parameter learning doesn't decompose!
- Learning requires inference!
- Apply gradient ascent or IPF iterations to obtain optimal parameters

