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More details on Loopy BP 
  Numerical problem: 

  messages < 1 get multiplied together 
as we go around the loops 

  numbers can go to zero 
  normalize messages to one: 

  Zi!j doesn’t depend on Xj, so doesn’t change the answer 

  Computing node “beliefs” (estimates of probs.):   
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Loopy BP in Factor graphs 
  From node i to factor j: 

  F(i) factors whose scope 
includes Xi  

  From factor j to node i: 
  Scope[φj] = Y[{Xi} 

  Belief:  
  Node: 

  Factor: 

A B C D E 

ABC ABD BDE CDE 
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Loopy BP v. Clique trees: Two 
ends of a spectrum 
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Generalize cluster graph 

  Generalized cluster graph:  
For set of factors F 
 Undirected graph 
 Each node i associated with a 

cluster Ci  
 Family preserving: for each 

factor fj 2 F,   9 node i such that 
scope[fi] ⊆Ci 

 Each edge i – j is associated 
with a set of variables  
Sij ⊆ Ci ∩ Cj 
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Running intersection property 

  (Generalized) Running 
intersection property (RIP) 
 Cluster graph satisfies RIP if 

whenever X2 Ci and X2 Cj then  
9 one and only one path from Ci 
to Cj where X2Suv for every edge  
(u,v) in the path 
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Examples of cluster graphs 
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Two cluster graph satisfying RIP 
with different edge sets 
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Generalized BP on cluster graphs 
satisfying RIP 

  Initialization: 
  Assign each factor φ to a clique α(φ), Scope[φ]⊆Cα(φ)  
  Initialize cliques:  

  Initialize messages: 

  While not converged, send messages: 

  Belief: 
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Cluster graph for Loopy BP 
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What if the cluster graph doesn’t 
satisfy RIP 
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Region graphs to the rescue 

  Can address generalized cluster graphs that 
don’t satisfy RIP using region graphs: 
 Book: 10.3 

  Example in your homework!  
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Revisiting Mean-Fields 

  Choice of Q: 
  Optimization problem: 

Announcements  

  Recitation tomorrow 

  HW5 out soon 

  Will not cover relational models this semester 
  Instead, recommend Pedro Domingos’ tutorial on 

Markov Logic 
  Markov logic is one example of a relational probabilistic 

model 
  November 14th from 1:00 pm to 3:30 pm in Wean 4623 
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Interpretation of energy functional 

  Energy functional: 

  Exact if P=Q: 

  View problem as an approximation of entropy term: 
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Entropy of a tree distribution 

  Entropy term: 
  Joint distribution: 

  Decomposing entropy term: 

  More generally:  
  di number neighbors of Xi 
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Loopy BP & Bethe approximation 

  Energy functional: 

  Bethe approximation of Free Energy: 
  use entropy for trees, but loopy graphs: 

  Theorem: If Loopy BP converges, resulting bij & bi are 
stationary point (usually local maxima) of Bethe Free energy!  
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GBP & Kikuchi approximation 
  Exact Free energy: Junction Tree 

  Bethe Free energy: 

  Kikuchi approximation: Generalized cluster 
graph  
  spectrum from Bethe to exact 

  Theorem: If GBP converges, resulting bCi are 
stationary point (usually local maxima) of 
Kikuchi Free energy!  
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What you need to know about GBP 

  Spectrum between Loopy BP & Junction Trees: 
 More computation, but typically better answers 

  If satisfies RIP, equations are very simple 

  General setting, slightly trickier equations, but 
not hard 

  Relates to variational methods: Corresponds to 
local optima of approximate version of energy 
functional  
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Parameter learning in  
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Learning Parameters of a BN 

  Log likelihood decomposes: 

  Learn each CPT independently 
  Use counts 
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Log Likelihood for MN 
  Log likelihood of the data: 
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Log Likelihood doesn’t decompose 
for MNs 
  Log likelihood: 

  A convex problem 
 Can find global optimum!! 

  Term log Z doesn’t decompose!! 
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Derivative of Log Likelihood for MNs 
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Derivative of Log Likelihood for MNs 2 
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Derivative of Log Likelihood for MNs 
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  Computing derivative requires inference: 

  Can optimize using gradient ascent 
 Common approach 
 Conjugate gradient, Newton’s method,… 

  Let’s also look at a simpler solution 
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Iterative Proportional Fitting (IPF) 
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  Setting derivative to zero: 

  Fixed point equation: 

  Iterate and converge to optimal parameters 
  Each iteration, must compute:  
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What you need to know about 
learning MN parameters? 

  BN parameter learning easy 
  MN parameter learning doesn’t decompose! 

  Learning requires inference! 

  Apply gradient ascent or IPF iterations to obtain 
optimal parameters 


