Generalized Belief Propagation

Graphical Models - 10708
 Carlos Guestrin
 Carnegie Mellon University
 November $12^{\text {th }}, 2008$

More details on Loopy BP

- Numerical problem:
\square messages < 1 get multiplied together as we go around the loops

\square numbers can go to zero
\square normalize messages to one:
$\delta_{i \rightarrow j}\left(X_{j}\right)=\frac{1}{Z_{i \rightarrow j}} \sum_{x_{i}} \phi_{i}\left(x_{i}\right) \phi_{i j}\left(x_{i}, X_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(x_{i}\right)$
$\square \mathrm{Z}_{\text {断 }}$ doesn't depend on X_{j}, so doesn't change the answer $i \rightarrow j$
■ Computing node "beliefs" (estimates of probs.):
$b_{i}\left(x_{i}\right)=\hat{P}\left(X_{i}\right)=\frac{1}{Z_{i}} \phi_{i}\left(X_{i}\right) \prod_{k \in \mathcal{N}(i)} \delta_{k \rightarrow i}\left(X_{i}\right)$

Loopy BP in Factor graphs

- From node i to factor j :

$$
\begin{aligned}
& \text { Fri) factors whose scope } \\
& \text { includes } \mathrm{X}_{\mathrm{i}} \\
& \delta_{i \rightarrow j}\left(X_{i}\right) \propto \prod_{k \in \mathcal{F}(i)-j} \delta_{k \rightarrow i}\left(X_{i}\right)
\end{aligned}
$$

(A) (B) (C) (E)

- From factor j to node i :
\square Scope $\left[\phi_{j}\right]=Y\left\{j \mathrm{X}_{\mathrm{i}}\right\}$

$$
\delta_{j \rightarrow i}\left(X_{i}\right) \propto \sum_{\underline{y}} \phi_{j}\left(X_{i}, \mathrm{y}\right) \prod_{X_{k} \in \operatorname{Scope}\left[\phi_{j}\right]-X_{i}} \delta_{k \rightarrow j}\left(x_{k}\right)
$$

- Belief:

Noose $P\left(x_{i}\right) \approx b_{1}\left(x_{i}\right) \alpha$
(Factory $P(Y) \approx b_{j}(Y) \propto \phi_{j}(Y) \prod_{x_{i} \in Y} \delta_{x_{i} \rightarrow \phi_{j}}\left(X_{i}\right)$

Generalize cluster graph

$C_{1} \cap C_{3}=\left\{B 3 \supseteq S_{13}=\varnothing \quad\right.$ Generalized cluster graph:
For set of factors F

\square Undirected graph not a true
\square Each node i associated with a cluster C ${ }_{\text {i }}$
Family preserving: for each
 scope $\left[\mathrm{f}_{\mathrm{i}}\right] \subseteq \mathrm{C}_{\mathrm{i}}$
\square Each edge $i-j$ is associated with a set of variables
$\mathbf{S}_{\mathrm{ij}} \subseteq \mathbf{C}_{\mathrm{i}} \cap \mathrm{C}_{\mathrm{j}}$
192

Running intersection property

- (Generalized) Running
 intersection property (RIP)
Cluster graph satisfies RIP if whenever $X{ }^{2} \mathrm{C}_{\mathrm{i}}$ and $\mathrm{XE} \mathrm{C}_{\mathrm{j}}$ then 3 one and only one path from \mathbf{C}_{i} to \mathbf{C}_{i} where XeS $_{\text {uv }}$ for every edge (u, v) in the path

Examples of cluster graphs

Generalized BP on cluster graphs satisfying RIP
 - Initialization:

\square Assign each factor ϕ to a clique $\widetilde{\alpha(\phi)}$, Scope $[\phi] \subseteq \mathbf{C}_{\alpha(\phi)}$
\square Initialize cliques: $\psi_{i}^{0}\left(\mathbf{C}_{i}\right) \propto \prod_{\phi: \alpha(\phi)=i} \phi \quad$ clique potential / mossaning
\square Initialize messages: $\delta_{j \rightarrow i}=1$

- While not converged, send messages:

- Belief:
$P\left(C_{i}\right) \approx b_{i}\left(c_{i}\right) \propto Q_{i}^{0}\left(C_{i}\right) T \int_{R \rightarrow i}\left(S_{i x}\right)$

Region graphs to the rescue

- Can address generalized cluster graphs that don't satisfy RIP using region graphs:

Book: 10.3

- Example in your homework! ©

Revisiting Mean-Fields

$\ln Z=q_{F}\left[P_{\mathcal{F}}, Q\right]+D\left(Q \| P_{\mathcal{F}}\right) \quad F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$

- Choice of $\mathrm{Q}:{ }^{0.9} Q(\alpha)=\pi_{i} Q_{i}\left(x_{i}\right)=\quad=$ equal
- Optimization problem: $\left.\max _{Q} \sum_{\phi \in F} E_{Q}[\ln \phi] \quad+\quad \sum_{i} H_{Q_{i}}\left(x_{i}\right)\right)$

$$
Q_{i}\left(x_{i}\right) \geqslant 0<\text { intuitively }
$$

$$
\sum_{x_{i}} Q_{i}\left(x_{i}\right)=1 \quad \begin{array}{ll}
\text { as approx to } \\
H_{p}(x)
\end{array}
$$

$\max _{Q} F\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+\sum_{j} H_{Q_{j}}\left(X_{j}\right), \quad \forall i, \sum_{x_{i}} Q_{i}\left(x_{i}\right)=1$

Announcements

- Recitation tomorrow

HW5 out soon

- Will not cover relational models this semester Instead, recommend Pedro Domingos' tutorial on Markov Logic
- Markov logic is one example of a relational probabilistic model
- November $14^{\text {th }}$ from 1:00 pm to $3: 30 \mathrm{pm}$ in Wean 4623

Interpretation of energy functional

Energy functional: $\quad \eta_{F}\left[P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})$
Londart

- Exaction. $\quad \ln Z=f_{F}\left[P_{\mathcal{F}}, Q\right]+\int D\left(Q \| P_{\mathcal{F}}\right)$
- View problem as an approximation of entropy term:

$$
\begin{gathered}
H_{Q}(x) \approx H_{P}(x) \\
F\left[P_{F, Q} Q\right]=\sum_{\phi \in F} F_{Q}\left[\ln (\phi]+H_{Q}(x) \approx \sum_{\phi \in F} E_{Q}[\ln \phi]+H_{p}(x)\right.
\end{gathered}
$$

Entropy of a tree distribution

- Entropy term: $H_{p}(X)$
- Joint distribution: $P(\alpha)=\frac{1}{z} \phi(C D) \phi(D G) \phi(D J) \phi(I J) \underset{\substack{\text { Lear }}}{\substack{\text { (Gat }}}$
- Decomposing entropy term:

$$
\begin{aligned}
H(X)= & H(C D)+H(D C)+H(G I)+H(I S)+H(G C) \\
& -H(D)-2 H(G)-H(I)
\end{aligned}
$$

Loopy BP \& Bethe approximation

- Energy functional: $\overparen{F}^{\left[1 P_{\mathcal{F}}, Q\right]=\sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi]+H_{Q}(\mathcal{X})}$
- Bethe approximation of Free Energy:

$$
\tilde{F}[P_{\mathcal{F}, Q]}=\sum_{(i, j) \in E} E_{b_{i j}}\left[\ln \phi_{i j}\right]+\underbrace{\sum_{(i, j) \in E} H_{b_{i j}}\left(X_{i}, X_{j}\right)-\sum_{i}\left(d_{i}-1\right) H_{b_{i}}\left(X_{i}\right)}_{\text {all }}
$$

T all edges in loopy grow font tree entropy lpn. for a bogey graph

- Theorem: If Loopy BP converges, resulting $\widetilde{b}_{i j} \& b_{i}$ are stationary point (usually local maxima) of Bethe Free energy!

GBP \& Kikuchi approximation

What you need to know about GBP

- Spectrum between Loopy BP \& Junction Trees:
\square More computation, but typically better answers
- If satisfies RIP, equations are very simple
- General setting, slightly trickier equations, but not hard

Relates to variational methods: Corresponds to local optima of approximate version of energy functional

Readings:
$K \& F: 10 \% .3$

Parameter learning in Markov nets

Learning Parameters of a BN

Log likelihood decomposes:

- Use counts

- Log likelihood of the data:

$$
\begin{aligned}
& l(D ; \theta)={ }^{109}(D \mid \theta) \stackrel{i{ }^{i d}}{=} \sum_{k} \log P\left(x^{(i \theta} \mid \theta\right) \\
& \begin{array}{l}
=\sum_{k} \log \frac{1}{z} \pi_{i j} \phi_{i j}\left(x_{i,}^{(k)}, x_{j}^{(k)} \mid \theta\right) \\
=\sum_{k} \sum_{i j} \log \phi_{i j}\left(x_{i}^{(k)}, x_{j}^{(k)}\right)-\sum_{k=1}^{m \log z}
\end{array} \\
& =\sum_{i j} \sum_{x_{i} x_{j}} \operatorname{cou}+\left(x_{i}=x_{i}, x_{j}=x_{j}\right) \log D_{i j}\left(x_{i}=x_{i}, x_{j}=x_{j}\right)-m \log z
\end{aligned}
$$

Log Likelihood doesn't decompose for MNs
 $\hat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}$
 - Log likelihood:
 $\ell(\mathcal{D}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

- A convex problem

Can find global optimum!!

■ Term $\log \mathrm{Z}$ doesn't decompose!!

Derivative of Log Likelihood for MNs

$\ell \overline{(\mathcal{D}}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

Derivative of Log Likelihood for MNs 2

$$
\widehat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}
$$

$\ell \overline{(\mathcal{D}}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

Derivative of Log Likelihood for MNs

$\ell \overline{\mathcal{D}}: \theta)=\log P(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{\mathbf{c}_{i}} \hat{P}\left(\mathbf{c}_{i}\right) \log \psi_{i}\left(\mathbf{c}_{i}\right)-m \log Z$

- Derivative:

$$
\frac{\partial \ell}{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}=\frac{m \hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-\frac{m P_{\mathcal{F}}^{\psi}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}
$$

- Computing derivative requires inference:

- Can optimize using gradient ascent

Common approach

Conjugate gradient, Newton's method,...

- Let's also look at a simpler solution

Iterative Proportional Fitting (IPF)

-

$$
\frac{\partial \ell}{\partial \psi_{i}\left(\mathbf{c}_{i}\right)}=\frac{m \hat{P}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}-\frac{m P_{\mathcal{F}}^{\psi}\left(\mathbf{c}_{i}\right)}{\psi_{i}\left(\mathbf{c}_{i}\right)}
$$

- Setting derivative to zero:
- Fixed point equation:

$\hat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}$

- Iterate and converge to optimal parameters
\square Each iteration, must compute:

What you need to know about learning MN parameters?

- BN parameter learning easy
- MN parameter learning doesn't decompose!
- Learning requires inference!
- Apply gradient ascent or IPF iterations to obtain optimal parameters

