Dynamic Bayesian Networks

Beyond 10708

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon $3_{0008}^{\text {University }}$
December

Dynamic Bayesian network (DBN)

- HMM defined by
\square Transition model $\mathrm{P}\left(\mathrm{X}^{(t+1)} \mid \mathrm{X}^{(t)}\right)$
\square Observation model $\left.\overline{\mathrm{P}\left(\mathrm{O}^{(t)} \mid\right.} \mathrm{X}^{(t)}\right)$
\square Starting state distribution $\mathrm{P}\left(\mathrm{X}^{(0)}\right)$
- DBN - Use Bayes net to represent each of these compactly
\square Starting state distribution $\mathrm{P}\left(\mathrm{X}^{(0)}\right)$ is a BN
(silly) e.g, performance in grad. school DBN

- Vars: Happiness, Productivity, HiraBlility, Fame
- Observations: PapeR, Schmooze
 $P\left(B^{(s)}=t \mid R^{(1)}=t, S^{(2)}=\left[\begin{array}{l}(s) \\ R^{(3)}=t, S(4) \\ \hline 1\end{array}\right.\right.$

Even after one time step!!

What happens when we marginalize out time t?

"Sparse" DBN and fast inference 2

Structured representation of belief often yields good approximate

Computing factored belief state in the next time step

- Introduce observations in current time step
\square Use J-tree to calibrate time t beliefs
- Compute $t+1$ belief, project into approximate belief state
\square marginalize into desired factors \square corresponds to KL projection Equivalent to computing marginals over factors directly

\square For each factor in $t+1$ step belief
- Use variable elimination

Error accumulation

- Each time step, projection introduces error
- Will error add up?
\square causing unbounded approximation error as $\Rightarrow \infty \rightarrow$ ০ס

Contraction in Markov process

BK Theorem

- Theorem: If Markov chain contracts at a rate of γ (usually very small), and assumed density projection at each time step has error bounded by ε (usually large) then the expected error at every iteration is bounded by ε / γ.

Example - BAT network [Forbes et al.]

Thin Junction Tree Filters [Paskin ${ }^{\text {03] }}$

- BK assumes fixed approximation clusters
- TJTF adapts clusters over time attempt to minimize projection error

Hybrid DBN (many continuous and discrete variables)

- DBN with large number of discrete and continuous variables
- \# of mixture of Gaussian components blows up in one time step!
- Need many smart tricks...
e.g., see Lerner Thesis

Reverse Water Gas Shift System (RWGS) [Lerner et al. '02]

DBN summary

- DBMs
\square factored representation of HMMs/Kalman filters
\square sparse representation does not lead to efficient inference
- Assumed density filtering
$\square \mathrm{BK}$ - factored belief state representation is assumed density
\square Contraction guarantees that error does blow up (but could still be large)
\square Thin junction tree filter adapts assumed density over time
\square Extensions for hybrid DENs
O Sampling Loopy BP (factored frontier)

Final

- Out: Later today wednesday
- Due: December 10th at NOON (STRICT DEADLINE)
- Start Early!!!

D

no collaborations
of ANY KIND

And the winners are...

- Popular Vote:

Learning and prediction of emotion components in a conversation using dynamic bayesian networks (Ekaterina Spriggs)

- Instructors' Choice:

Temporal model for Enron email dataset (Leman Akoglu and Seungil Huh)
Learning low-treewidth CRFs via Graph cuts (Dafna Shahaf)

This semester...

- Bayesian networks, Markov networks, factor graphs, decomposable models, junction trees, parameter learning, structure learning, semantics, exact inference, variable elimination, context-specific independence, approximate inference, sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing data, EM, Chow-Liu, IPF, Gaussian and hybrid models, discrete and continuous variables, temporal and template models, Kalman filter, linearization, conditional random fields, assumed density filtering, DBNs, BK, Causality,...
- Just the beginning... ©

Quick overview of some hot topics...

■ Maximum Margin Markov Networks

- Relational Probabilistic Models
- Influence Diagrams

OCR Example

- We want: $\operatorname{argmax}_{\text {word }} \mathbf{w}^{\top} \mathbf{f}$ (ratas, word) $=$ "brace"
- Equivalently:

Max Margin Estimation

- Goal: find w such that

$$
\begin{aligned}
& \underbrace{\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{t}(\mathbf{x}))>\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y})}_{\mathbf{w}^{\top} \Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \geq \boldsymbol{\gamma} \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y})} \begin{array}{l}
\mathbf{w}^{\top}[\mathbf{f}(\mathbf{x}, \mathbf{t}(\mathbf{x}))-\mathbf{f}(\mathbf{x}, \mathbf{y})]
\end{array}>0
\end{aligned} \quad \mathbf{x} \in \mathrm{D} \quad \mathbf{y} \notin \mathbf{t}(\mathbf{x})
$$

- Maximize margin γ
- Gain over \mathbf{y} grows with \# of mistakes in $\mathbf{y}: \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y})$

$\Delta t_{\text {praze }}($ "craze") $)=2$	$\Delta t_{\text {braze }}($ "zzzzz") $=5$

Propositional Models and Generalization

- Suppose you learn a model for social networks for CMU from FaceBook data to predict movie preferences:

- How would you apply when new people join CMU?

Yi

- Can you apply it to make predictions a some "little technical college" in Cambridge, Mass?

Generalization requires Relational Models (e.g., see tutorials by Getoor \& Domingos)

- Bayes nets deffined specifically for an instance, e.g., CMU FaceBook today
- fixed number of people
- fixed relationships between people
- ...
- Relational and first-order probabilistic models
- talk about objects and relations between objects
- allow us to represent different (and unknown) numbers
- generalize knowledge learned from one domain to other, related, but different domains

Reasoning about decisions K\&F Chapters 21 \& 22

So far, graphical models only have random variables

- What if we could make decisions that influence the probability of these variables?
- e.g., steering angle for a car, buying stocks, choice of medical treatment

How do we choose the best decision?

- the one that maximizes the expected long-term utility

How do we coordinate multiple decisions?

Example of an Influence Diagram

Many, many, many more topics we didn't even touch, e.g.,...

- Graph cuts for MPE inference
- Exact inference in models with large treewidth, attractive/submodular potentials
- Active learning
- What variables should I observe to learn?
- Topic Models, Latent Dirichlet Allocation
- Unsupervised, discover topics in data
- Non-parametric models
- What if you don't know the number of topics in your data?
- Continuous time models
- DBNs have discrete time steps, but the world is continuous
- Learning theory for graphical models
- How many samples do I need?
- Distributed algorithms for graphical models
- We are moving to a parallel world... where are you?
- Graphical models for reinforcement learning
- Combine DBNs with decision making to scale to huge multiagent problems
- Applications

■

What next?

Seminars at CMU:
\square Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
\square Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/
\square Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar
\square Statistics Department seminars: http://www.stat.cmu.edu/seminar

- Journal:
\square JMLR - Journal of Machine Learning Research (free, on the web)
\square JAIR - Journal of AI Research (free, on the web)
\square...
- Conferences:
\square UAI: Uncertainty in AI
\square NIPS: Neural Information Processing Systems
\square Also ICML, AAAI, IJCAI and others
- Some MLD courses:

10-705 Intermediate Statistics (Fall)
\square 10-702 Statistical Foundations of Machine Learning (Spring)
\square 10-725 Optimization (Spring 2010)
\square 10-615 Art that Learns (Spring)
\square...

