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Dynamic Bayesian Networks 

Beyond 10708 

Graphical Models – 10708 
Carlos Guestrin 
Carnegie Mellon University 

December 1st, 2006 

Readings: 
 K&F: 13.1, 13.2, 13.3 

Dynamic Bayesian network (DBN) 

  HMM defined by 
  Transition model P(X(t+1)|X(t)) 
  Observation model P(O(t)|X(t)) 
  Starting state distribution P(X(0)) 

  DBN – Use Bayes net to represent each of these compactly 
  Starting state distribution P(X(0)) is a BN 
  (silly) e.g, performance in grad. school DBN  

  Vars: Happiness, Productivity, HiraBlility, Fame 
  Observations: PapeR, Schmooze 
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Unrolled DBN 

  Start with P(X(0)) 
  For each time step, add vars as defined by 2-TBN 
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“Sparse” DBN and fast inference 
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Even after one time step!! 

What happens when we marginalize out time t? 
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“Sparse” DBN and fast inference 2 

“Sparse” DBN            Fast inference Almost! 
 

Structured representation of belief often yields good approximate 
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BK Algorithm for approximate DBN inference 
[Boyen, Koller ’98] 

  Assumed density filtering: 
  Choose a factored representation P for the belief state 
  Every time step, belief not representable with P, project into representation 
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A simple example of BK: Fully-
Factorized Distribution 

  Assumed density: 
  Fully factorized 
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Computing Fully-Factorized  
Distribution at time t+1 

  Assumed density: 
  Fully factorized 
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General case for BK: Junction Tree 
Represents Distribution 

  Assumed density: 
  Fully factorized 
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Computing factored belief state in 
the next time step 

  Introduce observations in current 
time step 
  Use J-tree to calibrate time t 

beliefs 
  Compute t+1 belief, project into 

approximate belief state 
  marginalize into desired factors 
  corresponds to KL projection 

  Equivalent to computing 
marginals over factors directly 
  For each factor in t+1 step belief 

  Use variable elimination 
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Error accumulation 

  Each time step, projection introduces error 
  Will error add up? 

 causing unbounded approximation error as t!1 
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Contraction in Markov process  
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BK Theorem 
  Error does not grow unboundedly! 

  Theorem: If Markov chain contracts at a rate of γ (usually very 
small), and assumed density projection at each time step has 
error bounded by ε (usually large) then the expected error at 
every iteration is bounded by ε/γ. 
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Example – BAT network [Forbes et al.] 

16

BK results [Boyen, Koller ’98]  
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Thin Junction Tree Filters [Paskin ’03]  

  BK assumes fixed 
approximation clusters 

  TJTF adapts clusters 
over time  
 attempt to minimize 

projection error 
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Hybrid DBN (many continuous and 
discrete variables) 
  DBN with large number of discrete 

and continuous variables 
  # of mixture of Gaussian components 

blows up in one time step! 
  Need many smart tricks… 

  e.g., see Lerner Thesis 

Reverse Water Gas Shift System 
(RWGS) [Lerner et al. ’02] 
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DBN summary 
  DBNs 

  factored representation of HMMs/Kalman filters 
  sparse representation does not lead to efficient inference 

  Assumed density filtering 
  BK – factored belief state representation is assumed density 
  Contraction guarantees that error does blow up (but could still be large) 
  Thin junction tree filter adapts assumed density over time 
  Extensions for hybrid DBNs 

Final 

  Out: Later today 
  Due: December 10th at NOON (STRICT 

DEADLINE) 
  Start Early!!! 
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And the winners are…  

  Popular Vote: 
 Learning and prediction of emotion components in a 

conversation using dynamic bayesian networks 
(Ekaterina Spriggs)  

  Instructors’ Choice: 
 Temporal model for Enron email dataset (Leman 

Akoglu and Seungil Huh) 
 Learning low-treewidth CRFs via Graph cuts (Dafna 

Shahaf) 
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This semester… 
  Bayesian networks, Markov networks, factor graphs, 

decomposable models, junction trees, parameter learning, 
structure learning, semantics, exact inference, variable 
elimination, context-specific independence, approximate 
inference, sampling, importance sampling, MCMC, Gibbs, 
variational inference, loopy belief propagation, generalized 
belief propagation, Kikuchi, Bayesian learning, missing 
data, EM, Chow-Liu, IPF, Gaussian and hybrid models, 
discrete and continuous variables, temporal and template 
models, Kalman filter, linearization, conditional random 
fields, assumed density filtering, DBNs, BK, Causality,… 

 Just the beginning…  
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Quick overview of some hot topics... 

  Maximum Margin Markov Networks 

  Relational Probabilistic Models 

  Influence Diagrams 
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Max (Conditional) Likelihood 

x1,t(x1) 
… 

 xm,t(xm) 

D 

f(x,y) 

Estimation Classification 

Don’t need to learn entire distribution! 
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OCR Example 
  We want: 

argmaxword wT f(       ,word) = “brace” 

  Equivalently: 
wT

 f(       ,“brace”) > wT
 f(       ,“aaaaa”) 

wT
 f(       ,“brace”) > wT

 f(       ,“aaaab”) 
… 
wT

 f(       ,“brace”) > wT
 f(       ,“zzzzz”) 

a lot! 
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  Goal:  find w such that 
  wTf(x,t(x)) > wTf(x,y)         x∈D    y≠t(x)  

         wT[f(x,t(x)) – f(x,y)] > 0 

  Maximize margin γ 
  Gain over y grows with # of mistakes in y: Δtx(y) 

Δt        (“craze”) = 2              Δt        (“zzzzz”) = 5 

w>Δfx(y) > 0 

Max Margin Estimation 

w>Δfx(y) ≥ γ  

A   A 

w>Δf            (“craze”) ≥ 2γ w>Δf            (“zzzzz”) ≥ 5γ 

Δtx(y) 
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M3Ns: Maximum Margin Markov 
Networks [Taskar et al. ’03]  

x1,t(x1) 
… 

 xm,t(xm) 

D 

f(x,y) 

Classification Estimation 
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Propositional Models and 
Generalization 

  Suppose you learn a model for social networks for CMU from 
FaceBook data to predict movie preferences: 

  How would you apply when new people join CMU? 

  Can you apply it to make predictions a some “little technical 
college” in Cambridge, Mass? 
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Generalization requires Relational Models  
(e.g., see tutorials by Getoor & Domingos) 

  Bayes nets defined specifically for an instance, 
e.g., CMU FaceBook today 
  fixed number of people 
  fixed relationships between people 
  … 

  Relational and first-order probabilistic models 
  talk about objects and relations between objects 
  allow us to represent different (and unknown) numbers 
  generalize knowledge learned from one domain to 

other, related, but different domains 
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Reasoning about decisions 
K&F Chapters 21 & 22 

  So far, graphical models only have random variables 

  What if we could make decisions that influence the probability  
of these variables? 
  e.g., steering angle for a car, buying stocks, choice of medical treatment 

  How do we choose the best decision? 
  the one that maximizes the expected long-term utility 

  How do we coordinate multiple decisions? 
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Example of an Influence Diagram 
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Many, many, many more topics we didn’t 
even touch, e.g.,... 
  Graph cuts for MPE inference 

  Exact inference in models with large treewidth, attractive/submodular potentials 

  Active learning 
  What variables should I observe to learn? 

  Topic Models, Latent Dirichlet Allocation 
  Unsupervised, discover topics in data 

  Non-parametric models 
  What if you don’t know the number of topics in your data? 

  Continuous time models 
  DBNs have discrete time steps, but the world is continuous 

  Learning theory for graphical models 
  How many samples do I need? 

  Distributed algorithms for graphical models 
  We are moving to a parallel world… where are you? 

  Graphical models for reinforcement learning 
  Combine DBNs with decision making to scale to huge multiagent problems 

  Applications 
  … 
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What next? 
  Seminars at CMU: 

  Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/ 
  Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/ 
  Machine Learning Department Seminar: http://calendar.cs.cmu.edu/ml/seminar 
  Statistics Department seminars: http://www.stat.cmu.edu/seminar  
  … 

  Journal: 
  JMLR – Journal of Machine Learning Research (free, on the web) 
  JAIR – Journal of AI Research (free, on the web) 
  … 

  Conferences: 
  UAI: Uncertainty in AI 
  NIPS: Neural Information Processing Systems 
  Also ICML, AAAI, IJCAI and others 

  Some MLD courses: 
  10-705 Intermediate Statistics (Fall) 
  10-702 Statistical Foundations of Machine Learning (Spring) 
  10-725 Optimization (Spring 2010) 
  10-615 Art that Learns (Spring)  
  … 


