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Introducing message passing with division 

  Variable elimination (message passing with 
multiplication) 
  message: 

  belief: 

  Message passing with division: 
  Belief: 

  Belief about separator: 

  message: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 
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Factor division 

  Let X and Y be disjoint set 
of variables 

  Consider two factors: 
φ1(X,Y) and φ2(Y) 

  Factor ψ=φ1/φ2 
  0/0=0 

10-708 – ©Carlos Guestrin 2006 4 

  Separator potentials µij 
  one per edge (same both directions) 
  holds “last message” 
  initialized to 1 

  Message i!j 
  what does i think the separator potential 

should be? 
   σi!j 

  update belief for j: 
  pushing j to what i thinks about separator 

  replace separator potential: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 

Lauritzen-Spiegelhalter Algorithm  
(a.k.a. belief propagation) Simplified description 

see reading for details 
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Convergence of Lauritzen-
Spiegelhalter Algorithm  

  Complexity: Linear in # cliques 
  for the “right” schedule over edges (leaves to root, 

then root to leaves) 

  Corollary: At convergence, every clique 
has correct belief 

C2 

C4 
C5 

C1 

C3 

C7 
C6 
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VE versus BP in clique trees 

  VE messages (the one that multiplies) 

  BP messages (the one that divides) 
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Clique tree invariant 

  Clique tree potential: 
 Product of clique potentials divided by separators potentials 

  Clique tree invariant: 
 P(X) = πΤ (X) 
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Belief propagation and clique tree 
invariant 

  Theorem: Invariant is maintained by BP algorithm! 

  BP reparameterizes clique potentials and 
separator potentials 
 At convergence, potentials and messages are marginal 

distributions 
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Subtree correctness 

  Informed message from i to j, if all messages into i 
(other than from j) are informed 
 Recursive definition (leaves always send informed 

messages) 
  Informed subtree: 

 All incoming messages informed 
  Theorem: 

 Potential of connected informed subtree T’ is marginal over 
scope[T’] 

  Corollary: 
 At convergence, clique tree is calibrated 

   πi = P(scope[πi]) 
   µij = P(scope[µij]) 
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Clique trees versus VE 

  Clique tree advantages 
 Multi-query settings 
  Incremental updates 
 Pre-computation makes complexity explicit 

  Clique tree disadvantages 
 Space requirements – no factors are “deleted” 
 Slower for single query 
 Local structure in factors may be lost when they are 

multiplied together into initial clique potential 
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Clique tree summary 
  Solve marginal queries for all variables in only twice the 

cost of query for one variable 
  Cliques correspond to maximal cliques in induced graph 
  Two message passing approaches 

  VE (the one that multiplies messages) 
  BP (the one that divides by old message) 

  Clique tree invariant 
  Clique tree potential is always the same 
  We are only reparameterizing clique potentials 

  Constructing clique tree for a BN 
  from elimination order 
  from triangulated (chordal) graph 

  Running time (only) exponential in size of largest clique 
  Solve exactly problems with thousands (or millions, or more) of 

variables, and cliques with tens of nodes (or less)  

10-708 – ©Carlos Guestrin 2006 12 

Swinging Couples revisited 

  This is no perfect map in BNs 
  But, an undirected model will be a perfect map 
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Potentials (or Factors) in Swinging 
Couples 
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Computing probabilities in Markov 
networks v. BNs 

  In a BN, can compute prob. of an 
instantiation by multiplying CPTs 

  In an Markov networks, can only 
compute ratio of probabilities directly 
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Normalization for computing 
probabilities 

  To compute actual probabilities, must compute 
normalization constant (also called partition function) 

  Computing partition function is hard! ! Must sum over 
all possible assignments 
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Factorization in Markov networks 

  Given an undirected graph H over variables 
X={X1,...,Xn} 

  A distribution P factorizes over H if 9  
  subsets of variables D1⊆X,…, Dm⊆X, such that the Di are 

fully connected in H 
  non-negative potentials (or factors) φ1(D1),…, φm(Dm) 

  also known as clique potentials 
  such that  

  Also called Markov random field H, or Gibbs 
distribution over H 
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Global Markov assumption in 
Markov networks 

  A path X1 – … – Xk is active when set of variables 
Z are observed if none of Xi 2 {X1,…,Xk} are 
observed (are part of Z)  

  Variables X are separated from Y given Z in 
graph H, sepH(X;Y|Z), if there is no active path 
between any X2X and any Y2Y given Z 

  The global Markov assumption  for a Markov 
network H is 
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The BN Representation Theorem 

Joint probability 
distribution: Obtain 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Independencies are sufficient to obtain BN structure G 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Read independencies of P from BN structure G 
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Markov networks representation Theorem 1 

  If you can write distribution as a normalized product of 
factors ) Can read independencies from graph 

Then H is an I-map for P 
If joint probability 

distribution P: 
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What about the other direction for Markov 
networks ? 

  Counter-example: X1,…,X4 are binary, and only eight assignments 
have positive probability: 

  For example, X1⊥X3|X2,X4: 
  E.g., P(X1=0|X2=0, X4=0) 

  But distribution doesn’t factorize!!!  

If H is an I-map for P Then 
joint probability 
distribution P: 
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Markov networks representation Theorem 2 
(Hammersley-Clifford Theorem) 

  Positive distribution and independencies ) P factorizes 
over graph 

If H is an I-map for P 
and  

P is a positive distribution 
Then 

joint probability 
distribution P: 
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Representation Theorem for 
Markov Networks 

If H is an I-map for P 
and  

P is a positive distribution 
Then 

Then H is an I-map for P 
If joint probability 

distribution P: 

joint probability 
distribution P: 
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Completeness of separation in 
Markov networks 

  Theorem: Completeness of separation 
 For “almost all” distributions that P factorize over Markov 

network H, we have that I(H) = I(P) 
  “almost all” distributions: except for a set of measure zero of 

parameterizations of the Potentials (assuming no finite set of 
parameterizations has positive measure) 

  Analogous to BNs 
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What are the “local” independence 
assumptions for a Markov network? 

  In a BN G: 
  local Markov assumption: variable independent of 

non-descendants given parents  
  d-separation defines global independence 
  Soundness: For all distributions:   

  In a Markov net H: 
  Separation defines global independencies 
  What are the notions of local independencies? 
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Local independence assumptions 
for a Markov network 

  Separation defines global independencies 

  Pairwise Markov Independence: 
  Pairs of non-adjacent variables A,B are independent given all 

others 

  Markov Blanket:  
  Variable A independent of rest given its neighbors 

T1 

T3 T4 

T5 T6 

T2 

T7 T8 T9 
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Equivalence of independencies in 
Markov networks 

  Soundness Theorem: For all positive distributions P, 
the following three statements are equivalent: 
 P entails the global Markov assumptions 

 P entails the pairwise Markov assumptions 

 P entails the local Markov assumptions (Markov blanket) 
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Minimal I-maps and Markov 
Networks 

  A fully connected graph is an I-map 
  Remember minimal I-maps? 

  A “simplest” I-map ! Deleting an edge makes it no longer an I-map  

  In a BN, there is no unique minimal I-map 

  Theorem: For positive distributions & Markov network, minimal I-map is 
unique!! 

  Many ways to find minimal I-map, e.g., 
  Take pairwise Markov assumption: 
  If P doesn’t entail it, add edge: 
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How about a perfect map? 

  Remember perfect maps? 
  independencies in the graph are exactly the same as those in P 

  For BNs, doesn’t always exist 
  counter example: Swinging Couples 

  How about for Markov networks? 
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Unifying properties of BNs and MNs 

  BNs: 
  give you: V-structures, CPTs are conditional probabilities, can 

directly compute probability of full instantiation 
  but: require acyclicity, and thus no perfect map for swinging 

couples 

  MNs: 
  give you: cycles, and perfect maps for swinging couples 
  but: don’t have V-structures, cannot interpret potentials as 

probabilities, requires partition function 

  Remember PDAGS??? 
  skeleton + immoralities 
  provides a (somewhat) unified representation 
  see book for details 

10-708 – ©Carlos Guestrin 2006 30 

What you need to know so far 
about Markov networks 

  Markov network representation: 
  undirected graph 
  potentials over cliques (or sub-cliques) 
  normalize to obtain probabilities 
  need partition function 

  Representation Theorem for Markov networks 
  if P factorizes, then it’s an I-map 
  if P is an I-map, only factorizes for positive distributions  

  Independence in Markov nets: 
  active paths and separation 
  pairwise Markov and Markov blanket assumptions 
  equivalence for positive distributions 

  Minimal I-maps in MNs are unique 
  Perfect maps don’t always exist 
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Some common Markov networks 
and generalizations 

  Pairwise Markov networks 
  A very simple application in computer vision 
  Logarithmic representation 
  Log-linear models 
  Factor graphs 
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Pairwise Markov Networks 

  All factors are over single variables or pairs of 
variables: 
  Node potentials 
  Edge potentials 

  Factorization: 

  Note that there may be bigger cliques in the 
graph, but only consider pairwise potentials 

T1 

T3 T4 

T5 T6 

T2 

T7 T8 T9 
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A very simple vision application 
  Image segmentation: separate foreground from 

background 
  Graph structure:  

  pairwise Markov net 
  grid with one node per pixel 

  Node potential: 
  “background color” v. “foreground color” 

  Edge potential: 
  neighbors like to be of the same class 
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Logarithmic representation 
  Standard model: 

  Log representation of potential (assuming positive potential): 
  also called the energy function 

  Log representation of Markov net: 
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Log-linear Markov network 
(most common representation) 

  Feature is some function φ[D] for some subset of variables D 
  e.g., indicator function 

  Log-linear model over a Markov network H: 
  a set of features φ1[D1],…, φk[Dk] 

  each Di is a subset of a clique in H 
  two φ’s can be over the same variables 

  a set of weights w1,…,wk 
  usually learned from data 
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Structure in cliques 

  Possible potentials for this graph: A 
B 

C 



19 

10-708 – ©Carlos Guestrin 2006 37 

Factor graphs 

  Very useful for approximate inference 
  Make factor dependency explicit 

  Bipartite graph: 
  variable nodes (ovals) for X1,…,Xn 
  factor nodes (squares) for φ1,…,φm 
  edge Xi – φj if Xi2 Scope[φj] 

A 
B 

C 
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Summary of types of Markov nets 

  Pairwise Markov networks 
 very common 
 potentials over nodes and edges 

  Log-linear models 
  log representation of potentials 
  linear coefficients learned from data 
 most common for learning MNs 

  Factor graphs 
 explicit representation of factors 

  you know exactly what factors you have 
 very useful for approximate inference 


