Junction Trees 3

Undirected Graphical Models

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
October 27 ${ }^{\text {th }}, 2008$

Introducing message passing with division

- Variable elimination (message passing with multiplication)
\square message:
\square belief:

Message passing with division:
\square Belief:
\square Belief about separator:
\square message:

Factor division

- Let \mathbf{X} and \mathbf{Y} be disjoint set of variables
- Consider two factors:
$\phi_{1}(\mathbf{X}, \mathbf{Y})$ and $\phi_{2}(\mathbf{Y})$
- Factor $\psi=\phi_{1} / \phi_{2}$
$\square 0 / 0=0$

a^{1}	b^{1}	0.5			
a^{1}	b^{2}	0.2			
a^{2}	b^{1}	0			
a^{2}	b^{2}	0			
a^{3}	b^{1}	0.3			
a^{3}	b^{2}	0.45	\quad	a^{1}	0.8
:---:	:---:				
a^{2}	0				
a^{3}	0.6	\quad	a^{1}	b^{1}	0.625
:---:	:---:	:---:			
a^{1}	b^{2}	0.25			
a^{2}	b^{1}	0			
a^{2}	b^{2}	0			
a^{3}	b^{1}	0.5			
a^{3}	b^{2}	0.75			

Lauritzen-Spiegelhalter Algorithm

 (ak a belief propagation) simplified dessirition (a.k.a. belief propagation) seimereading soro odeation- Separator potentials μ_{ij}
\square one per edge (same both directions)
\square holds "last message"
\square initialized to 1
- Message $\mathrm{i} \rightarrow \mathrm{j}$
\square what does i think the separator potential should be?
- $\sigma_{i \rightarrow j}$
\square update belief for j :
- pushing j to what i thinks about separatorreplace separator potential:

Convergence of LauritzenSpiegelhalter Algorithm

- Complexity: Linear in \# cliques
\square for the "right" schedule over edges (leaves to root, then root to leaves)
- Corollary: At convergence, every clique has correct belief

VE versus BP in clique trees

- VE messages (the one that multiplies)
- BP messages (the one that divides)

Clique tree invariant

Clique tree potential:

Product of clique potentials divided by separators potentials

- Clique tree invariant:
$\mathrm{P}(\mathbf{X})=\pi_{T}(\mathbf{X})$

Belief propagation and clique tree invariant

- Theorem: Invariant is maintained by BP algorithm!
- BP reparameterizes clique potentials and separator potentials
\square At convergence, potentials and messages are marginal distributions

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
\square Recursive definition (leaves always send informed messages)

Informed subtree:

\square All incoming messages informed

- Theorem:

Potential of connected informed subtree T^{\prime} is marginal over scope[T]
Corollary:
\square At convergence, clique tree is calibrated

- $\pi_{i}=\mathrm{P}\left(\mathrm{scope}\left[\pi_{\mathrm{i}}\right]\right)$
- $\mu_{\mathrm{ij}}=\mathrm{P}\left(\mathrm{scope}\left[\mu_{\mathrm{ij}}\right]\right)$

Clique trees versus VE

- Clique tree advantages

Multi-query settings
\square Incremental updates
\square Pre-computation makes complexity explicit

Clique tree disadvantages
Space requirements - no factors are "deleted"
Slower for single query
Local structure in factors may be lost when they are multiplied together into initial clique potential

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
\square VE (the one that multiplies messages)
BP (the one that divides by old message)
- Clique tree invariant
\square Clique tree potential is always the same
\square We are only reparameterizing clique potentials
- Constructing clique tree for a BN
\square from elimination order
\square from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
\square Solve exactly problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

Swinging Couples revisited

- This is no perfect map in BNs
- But, an undirected model will be a perfect map

Computing probabilities in Markov networks v. BNs

- In a BN, can compute prob. of an instantiation by multiplying CPTs

In an Markov networks, can only compute ratio of probabilities directly

Normalization for computing probabilities

- To compute actual probabilities, must compute normalization constant (also called partition function)

Assignment			Unnormalized	Normalized	
a^{0}	b^{0}	c^{0}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{0}	d^{1}	30000	0.04
a^{0}	b^{0}	c^{1}	d^{0}	30000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	30	$4.1 \cdot 10^{-6}$
a^{0}	b^{1}	c^{0}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{0}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{0}	500000	0.69
a^{0}	b^{1}	c^{1}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{1}	100000	0.14
a^{1}	b^{0}	c^{1}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{1}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{0}	10	$1.4 \cdot 10^{-6}$
a^{1}	b^{1}	c^{0}	d^{1}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{0}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100000	0.014

- Computing partition function is hard! \rightarrow Must sum over all possible assignments

Factorization in Markov networks

- Given an undirected graph H over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

A distribution P factorizes over H if \exists
\square subsets of variables $\mathbf{D}_{1} \subseteq \mathbf{X}, \ldots, \mathbf{D}_{\mathbf{m}} \subseteq \mathbf{X}$, such that the $\mathbf{D}_{\mathbf{i}}$ ar fully connected in H
\square non-negative potentials (or factors) $\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{\mathrm{m}}\left(\mathbf{D}_{\mathrm{m}}\right)$

- also known as clique potentials
\square such that

Also called Markov random field H, or Gibbs distribution over H

Global Markov assumption in Markov networks

A path $X_{1}-\ldots-X_{k}$ is active when set of variables \mathbf{Z} are observed if none of $X_{i} \in\left\{X_{1}, \ldots, X_{k}\right\}$ are observed (are part of \mathbf{Z})

- Variables \mathbf{X} are separated from \mathbf{Y} given \mathbf{Z} in
 graph H, $\operatorname{sep}_{H}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$, if there is no active path between any $\mathbf{X} \in \mathbf{X}$ and any $\mathbf{Y} \in \mathbf{Y}$ given \mathbf{Z}
- The global Markov assumption for a Markov network H is

The BN Representation Theorem

If conditional
independencies in BN are subset of conditional
independencies in P

$$
\begin{gathered}
\begin{array}{c}
\text { Joint probability } \\
\text { distribution: }
\end{array} \\
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
\end{gathered}
$$

Important because:
Independencies are sufficient to obtain BN structure G

If joint probability			
distribution:	Obtain		Then conditional
:---:			
independencies			
in BN are subset of			
conditional			
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$	\quad	independencies in P	
:---:			

Important because:
Read independencies of P from BN structure G

Markov networks representation Theorem 1

- If you can write distribution as a normalized product of factors \Rightarrow Can read independencies from graph

What about the other direction for Markov networks ?

If H is an I-map for P

Then | joint probability |
| :---: |
| distribution $P:$ |
| $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)$ |

- Counter-example: X_{1}, \ldots, X_{4} are binary, and only eight assignments have positive probability: $\begin{aligned}(0,0,0,0) & (1,0,0,0) & (1,1,0,0) & (1,1,1,0) \\ (0,0,0,1) & (0,0,1) & (0,1,1,1) & (1,1,1,1)\end{aligned}$

$$
\begin{array}{llll}
(0,0,0,1) & (0,0,1,1) & (0,1,1,1) & (1,1,1,1)
\end{array}
$$

- For example, $X_{1} \perp X_{3} \mid X_{2}, X_{4}$:
\square E.g., $P\left(X_{1}=0 \mid X_{2}=0, X_{4}=0\right)$
- But distribution doesn't factorize!!!

Markov networks representation Theorem 2 (Hammersley-Clifford Theorem)
 If H is an I-map for P
 P is a positive distribution
 Then joint probability distribution P : $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)$

- Positive distribution and independencies $\Rightarrow P$ factorizes over graph

Representation Theorem for Markov Networks

If H is an I-map for P and
P is a positive distribution

Completeness of separation in Markov networks

- Theorem: Completeness of separation
\square For "almost all" distributions that P factorize over Markov network H, we have that $I(H)=I(P)$
\square "almost all" distributions: except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Analogous to BNs

What are the "local" independence assumptions for a Markov network?

- In a BN G:
\square local Markov assumption: variable independent of non-descendants given parents
\square d-separation defines global independence
\square Soundness: For all distributions:

In a Markov net H :
\square Separation defines global independencies
\square What are the notions of local independencies?

Local independence assumptions for a Markov network

- Separation defines global independencies

Pairwise Markov Independence:
\square Pairs of non-adjacent variables A,B are independent given all others

Markov Blanket:

\square Variable A independent of rest given its neighbors

Equivalence of independencies in Markov networks

- Soundness Theorem: For all positive distributions P, the following three statements are equivalent:
$\square P$ entails the global Markov assumptions
$\square P$ entails the pairwise Markov assumptions
$\square P$ entails the local Markov assumptions (Markov blanket)

Minimal I-maps and Markov Networks

- A fully connected graph is an I-map
- Remember minimal l-maps?
\square A "simplest" I-map \rightarrow Deleting an edge makes it no longer an I-map
- In a BN, there is no unique minimal I-map
- Theorem: For positive distributions \& Markov network, minimal I-map is unique!!
- Many ways to find minimal I-map, e.g.,
\square Take pairwise Markov assumption:
\square If P doesn't entail it, add edge:

How about a perfect map?

Remember perfect maps?
\square independencies in the graph are exactly the same as those in P

- For BNs, doesn't always exist
\square counter example: Swinging Couples
■ How about for Markov networks?

Unifying properties of BNs and MNs

- BNs:
\square give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
\square but: require acyclicity, and thus no perfect map for swinging couples
- MNs:
\square give you: cycles, and perfect maps for swinging couples
\square but: don't have V -structures, cannot interpret potentials as probabilities, requires partition function
■ Remember PDAGS???
\square skeleton + immoralities
\square provides a (somewhat) unified representation
\square see book for details

What you need to know so far about Markov networks

- Markov network representation:
\square undirected graph
\square potentials over cliques (or sub-cliques)
\square normalize to obtain probabilities
\square need partition function
- Representation Theorem for Markov networks
\square if P factorizes, then it's an I-map
\square if P is an I-map, only factorizes for positive distributions
- Independence in Markov nets:
\square active paths and separation
pairwise Markov and Markov blanket assumptions
\square equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

Some common Markov networks and generalizations

- Pairwise Markov networks
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
\square Node potentials
\square Edge potentials
- Factorization:

- Note that there may be bigger cliques in the graph, but only consider pairwise potentials

A very simple vision application

- Image segmentation: separate foreground from background
- Graph structure:
\square pairwise Markov net

\square grid with one node per pixel
- Node potential:
\square "background color" v. "foreground color"
- Edge potential:
neighbors like to be of the same class

Logarithmic representation

- Standard model:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Log representation of potential (assuming positive potential):
\square also called the energy function
- Log representation of Markov net:

Log-linear Markov network (most common representation)

- Feature is some function $\phi[\mathbf{D}]$ for some subset of variables \mathbf{D}
\square e.g., indicator function
- Log-linear model over a Markov network H :
\square a set of features $\phi_{1}\left[\mathbf{D}_{1}\right], \ldots, \phi_{k}\left[\mathbf{D}_{k}\right]$
- each D_{i} is a subset of a clique in H
- two ϕ 's can be over the same variables
\square a set of weights w_{1}, \ldots, w_{k}
- usually learned from data
$\square P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left[\sum_{i=1}^{k} w_{i} \phi_{i}\left(\mathbf{D}_{i}\right)\right]$

Structure in cliques

- Possible potentials for this graph:

Factor graphs

- Very useful for approximate inference

Make factor dependency explicit
Bipartite graph:
\square variable nodes (ovals) for $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
\square factor nodes (squares) for $\phi_{1}, \ldots, \phi_{m}$
\square edge $X_{i}-\phi_{j}$ if $X_{i} \in$ Scope $\left[\phi_{j}\right]$

Summary of types of Markov nets

- Pairwise Markov networks
\square very common
potentials over nodes and edges
- Log-linear models
log representation of potentialslinear coefficients learned from datamost common for learning Ns
- Factor graphs
\square explicit representation of factors
- you know exactly what factors you have
\square very useful for approximate inference

