

Convergence of Lauritzen-Spiegelhalter Algorithm

- Complexity: Linear in # cliques
 - for the "right" schedule over edges (leaves to root, then root to leaves)
- Corollary: At convergence, every clique has correct belief

10-708 - ©Carlos Guestrin 2006

VE versus BP in clique trees

- VE messages (the one that multiplies)
- BP messages (the one that divides)

10-708 – ©Carlos Guestrin 2006

Clique tree invariant

- Clique tree potential:
 - □ Product of clique potentials divided by separators potentials
- Clique tree invariant:
 - \square P(**X**) = π_T (**X**)

10.708 - @Carlos Guestrin 2006

.

Belief propagation and clique tree invariant

- - Theorem: Invariant is maintained by BP algorithm!
 - BP reparameterizes clique potentials and separator potentials
 - ☐ At convergence, potentials and messages are marginal distributions

10-708 – ©Carlos Guestrin 2006

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
 - Recursive definition (leaves always send informed messages)
- Informed subtree:
 - □ All incoming messages informed
- Theorem:
 - □ Potential of connected informed subtree T' is marginal over scope[T']
- Corollary:
 - ☐ At convergence, clique tree is *calibrated*
 - $\pi_i = P(scope[\pi_i])$
 - μ_{ii} = P(scope[μ_{ii}])

10-708 - ©Carlos Guestrin 2006

Clique trees versus VE

- - Clique tree advantages
 - □ Multi-query settings
 - □ Incremental updates
 - □ Pre-computation makes complexity explicit
 - Clique tree disadvantages
 - □ Space requirements no factors are "deleted"
 - $\hfill \square$ Slower for single query
 - □ Local structure in factors may be lost when they are multiplied together into initial clique potential

10-708 – ©Carlos Guestrin 2006

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
 - □ VE (the one that multiplies messages)
 - □ BP (the one that divides by old message)
- Clique tree invariant
 - ☐ Clique tree potential is always the same
 - ☐ We are only reparameterizing clique potentials
- Constructing clique tree for a BN
 - □ from elimination order
 - ☐ from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
 - □ Solve **exactly** problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

10-708 - ©Carlos Guestrin 2006

11

Swinging Couples revisited

- This is no perfect map in BNs
- But, an undirected model will be a perfect map

10-708 – ©Carlos Guestrin 2006

Computing probabilities in Markov networks v. BNs

- In a BN, can compute prob. of an instantiation by multiplying CPTs
- In an Markov networks, can only compute ratio of probabilities directly

0-708 – ©Carlos Guestrin 2006

Normalization for computing probabilities

To compute actual probabilities, must compute normalization constant (also called partition function)

Assignment				Unnormalized	Normalized
a^0	b^0	c^0	d^0	300000	0.04
a^0	b^0	c^0	d^1	300000	0.04
a^0	b^0	c^1	d^0	300000	0.04
a^0	b^0	c^1	d^{1}	30	$4.1 \cdot 10^{-6}$
a^0	b^1	c^0	d^{6}	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^1	d^0	5000000	0.69
a^0	b^1	c^{1}	d^1	//500	$6.9 \cdot 10^{-5}$
a^1	b^0	c^0	$-d^0$	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^0	d^1	1000000	0.14
a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^1	d^1	100	$1.4 \cdot 10^{-5}$
a^1	b^1	c^0	d^0	10	$1.4 \cdot 10^{-6}$
a^1	b^1	c^0	d^1	100000	0.014
a^1	b^1	c^1	d^0	100000	0.014
a^1	b^1	c^1	d^1	100000	0.014

 Computing partition function is hard! → Must sum over all possible assignments

10-708 – ©Carlos Guestrin 2006

15

Factorization in Markov networks

- Given an undirected graph H over variablesX={X₁,...,X_n}
- A distribution *P* **factorizes** over *H* if ∃
 - □ subsets of variables D₁⊆X,..., D_m⊆X, such that the D_i ar fully connected in H
 - $\quad \ \, \square \ \, \textit{non-negative potentials} \; (\text{or factors}) \; \varphi_1(\boldsymbol{D_1}), \ldots, \, \varphi_m(\boldsymbol{D_m})$
 - also known as clique potentials
 - such that
- Also called Markov random field H, or Gibbs distribution over H

10-708 - ©Carlos Guestrin 2006

Global Markov assumption in Markov networks

A path X₁ - ... - Xk is active when set of variables
Z are observed if none of X₁ ∈ {X₁,...,Xk} are observed (are part of Z)

- Variables X are separated from Y given Z in graph H, sep_H(X;Y|Z), if there is no active path between any X∈X and any Y∈Y given Z
- The global Markov assumption for a Markov network H is

10-708 - @Carlos Guestrin 2006

17

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Independencies are sufficient to obtain BN structure G

If joint probability distribution:

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

Important because:

Read independencies of P from BN structure G

8___

Markov networks representation Theorem 1

■ If you can write distribution as a normalized product of factors ⇒ Can read independencies from graph

10-708 - @Carlos Guestrin 2006

19

What about the other direction for Markov networks?

If H is an I-map for P

joint probability distribution *P*:

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

- $\begin{array}{c} \bullet \quad \text{Counter-example: X_1,\ldots,X_4 are binary, and only eight assignments} \\ \text{have positive probability:} \quad {}^{(0,0,0,0)}_{(0,0,0,1)} \quad {}^{(1,0,0,0)}_{(0,0,1,1)} \quad {}^{(1,1,0,0)}_{(0,1,1,1)} \quad {}^{(1,1,1,0)}_{(1,1,1,1)} \\ \end{array}$
- For example, X₁⊥X₃|X₂,X₄:
 □ E.g., P(X₁=0|X₂=0, X₄=0)
- But distribution doesn't factorize!!!

10-708 – ©Carlos Guestrin 2006

Markov networks representation Theorem 2 (Hammersley-Clifford Theorem)

If H is an I-map for P and P is a positive distribution P: $P \text{ is a positive distribution} \qquad P(X_1,\ldots,X_n) = \frac{1}{Z}\prod_{i=1}^m \phi_i(\mathbf{D}_i)$

■ Positive distribution and independencies ⇒ P factorizes over graph

10-708 - ©Carlos Guestrin 2006

21

Representation Theorem for Markov Networks

If joint probability distribution P: Then $P(X_1,\ldots,X_n)=rac{1}{Z}\prod_{i=1}^m\phi_i(\mathbf{D}_i)$

If H is an I-map for P and P is a positive distribution P: $P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$

10-708 – ©Carlos Guestrin 2006

Completeness of separation in Markov networks

- Theorem: Completeness of separation
 - □ For "almost all" distributions that P factorize over Markov network H, we have that I(H) = I(P)
 - □ "almost all" distributions: except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Analogous to BNs

10-708 - @Carlos Guestrin 2006

23

What are the "local" independence assumptions for a Markov network?

- In a BN G:
 - local Markov assumption: variable independent of non-descendants given parents
 - □ d-separation defines global independence
 - □ Soundness: For all distributions:
- In a Markov net H:
 - $\hfill \square$ Separation defines global independencies
 - □ What are the notions of local independencies?

10-708 – ©Carlos Guestrin 2006

Local independence assumptions for a Markov network

- Separation defines global independencies
- Pairwise Markov Independence:
 - Pairs of non-adjacent variables A,B are independent given all others

- Markov Blanket:
 - □ Variable A independent of rest given its neighbors

10-708 - @Carlos Guestrin 2006

25

Equivalence of independencies in Markov networks

- **Soundness Theorem**: For all positive distributions *P*, the following three statements are equivalent:
 - ☐ P entails the global Markov assumptions
 - □ P entails the pairwise Markov assumptions
 - ☐ P entails the local Markov assumptions (Markov blanket)

10-708 – ©Carlos Guestrin 2006

Minimal I-maps and Markov Networks

- A fully connected graph is an I-map
- Remember minimal I-maps?
 - □ A "simplest" I-map → Deleting an edge makes it no longer an I-map
- In a BN, there is no unique minimal I-map
- Theorem: For positive distributions & Markov network, minimal I-map is unique!!
- Many ways to find minimal I-map, e.g.,
 - □ Take pairwise Markov assumption:
 - ☐ If P doesn't entail it, add edge:

10-708 - @Carlos Guestrin 2006

27

How about a perfect map?

- Remember perfect maps?
 - \Box independencies in the graph are exactly the same as those in P
- For BNs, doesn't always exist
 - □ counter example: Swinging Couples
- How about for Markov networks?

10-708 – ©Carlos Guestrin 2006

Unifying properties of BNs and MNs

BNs:

- □ give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
- □ but: require acyclicity, and thus no perfect map for swinging couples

MNs:

- □ give you: cycles, and perfect maps for swinging couples
- □ but: don't have V-structures, cannot interpret potentials as probabilities, requires partition function

Remember PDAGS???

- □ skeleton + immoralities
- □ provides a (somewhat) unified representation
- □ see book for details

10-708 - @Carlos Guestrin 2006

29

What you need to know so far about Markov networks

Markov network representation:

- undirected graph
- □ potentials over cliques (or sub-cliques)
- □ normalize to obtain probabilities
- need partition function

Representation Theorem for Markov networks

- □ if P factorizes, then it's an I-map
- □ if P is an I-map, only factorizes for positive distributions

Independence in Markov nets:

- □ active paths and separation
- □ pairwise Markov and Markov blanket assumptions
- equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

10-708 – ©Carlos Guestrin 2006

Some common Markov networks and generalizations

- Pairwise Markov networks
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

10-708 - @Carlos Guestrin 2006

31

Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
 - □ Node potentials
 - Edge potentials
- Factorization:

 Note that there may be bigger cliques in the graph, but only consider pairwise potentials

10-708 – ©Carlos Guestrin 2006

A very simple vision application

- Graph structure:
 - pairwise Markov net
 - □ grid with one node per pixel
- Node potential:
 - □ "background color" v. "foreground color"
- Edge potential:
 - □ neighbors like to be of the same class

10-708 - @Carlos Guestrin 2006

33

Logarithmic representation

• Standard model: $P(X_1, \dots, X_n) = \frac{1}{2}$

 $P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$

- Log representation of potential (assuming positive potential):
 - □ also called the energy function
- Log representation of Markov net:

10-708 – ©Carlos Guestrin 2006

Log-linear Markov network (most common representation)

- Feature is some function φ[D] for some subset of variables D
 - □ e.g., indicator function
- Log-linear model over a Markov network *H*:
 - \square a set of features $\phi_1[\mathbf{D}_1], \ldots, \phi_k[\mathbf{D}_k]$
 - each **D**_i is a subset of a clique in *H*
 - two φ's can be over the same variables
 - □ a set of weights w₁,...,w_k
 - usually learned from data

$$\square P(X_1,...,X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i) \right]$$

10-708 - @Carlos Guestrin 2006

35

Structure in cliques

Possible potentials for this graph:

0-708 - ©Carlos Guestrin 2006

Factor graphs

- Very useful for approximate inference
 - □ Make factor dependency explicit
- Bipartite graph:
 - \square variable nodes (ovals) for $X_1, ..., X_n$
 - $\hfill\Box$ factor nodes (squares) for $\varphi_1,...,\varphi_m$
 - $\ \ \square \ \ \text{edge} \ X_i \varphi_i \ \text{if} \ X_i {\in} \ Scope[\varphi_i]$

10-708 - @Carlos Guestrin 2006

37

Summary of types of Markov nets

- Pairwise Markov networks
 - □ very common
 - $\hfill\Box$ potentials over nodes and edges
- Log-linear models
 - □ log representation of potentials
 - $\hfill \square$ linear coefficients learned from data
 - □ most common for learning MNs
- Factor graphs
 - □ explicit representation of factors
 - you know exactly what factors you have
 - □ very useful for approximate inference

10-708 - ©Carlos Guestrin 2006