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Introducing message passing with division 

  Variable elimination (message passing with 
multiplication) 
  message: 

  belief: 

  Message passing with division: 
  Belief: 

  Belief about separator: 

  message: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 
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Factor division 

  Let X and Y be disjoint set 
of variables 

  Consider two factors: 
φ1(X,Y) and φ2(Y) 

  Factor ψ=φ1/φ2 
  0/0=0 
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  Separator potentials µij 
  one per edge (same both directions) 
  holds “last message” 
  initialized to 1 

  Message i!j 
  what does i think the separator potential 

should be? 
   σi!j 

  update belief for j: 
  pushing j to what i thinks about separator 

  replace separator potential: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 

Lauritzen-Spiegelhalter Algorithm  
(a.k.a. belief propagation) Simplified description 

see reading for details 
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Convergence of Lauritzen-
Spiegelhalter Algorithm  

  Complexity: Linear in # cliques 
  for the “right” schedule over edges (leaves to root, 

then root to leaves) 

  Corollary: At convergence, every clique 
has correct belief 

C2 

C4 
C5 

C1 

C3 

C7 
C6 
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VE versus BP in clique trees 

  VE messages (the one that multiplies) 

  BP messages (the one that divides) 
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Clique tree invariant 

  Clique tree potential: 
 Product of clique potentials divided by separators potentials 

  Clique tree invariant: 
 P(X) = πΤ (X) 
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Belief propagation and clique tree 
invariant 

  Theorem: Invariant is maintained by BP algorithm! 

  BP reparameterizes clique potentials and 
separator potentials 
 At convergence, potentials and messages are marginal 

distributions 
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Subtree correctness 

  Informed message from i to j, if all messages into i 
(other than from j) are informed 
 Recursive definition (leaves always send informed 

messages) 
  Informed subtree: 

 All incoming messages informed 
  Theorem: 

 Potential of connected informed subtree T’ is marginal over 
scope[T’] 

  Corollary: 
 At convergence, clique tree is calibrated 

   πi = P(scope[πi]) 
   µij = P(scope[µij]) 
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Clique trees versus VE 

  Clique tree advantages 
 Multi-query settings 
  Incremental updates 
 Pre-computation makes complexity explicit 

  Clique tree disadvantages 
 Space requirements – no factors are “deleted” 
 Slower for single query 
 Local structure in factors may be lost when they are 

multiplied together into initial clique potential 
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Clique tree summary 
  Solve marginal queries for all variables in only twice the 

cost of query for one variable 
  Cliques correspond to maximal cliques in induced graph 
  Two message passing approaches 

  VE (the one that multiplies messages) 
  BP (the one that divides by old message) 

  Clique tree invariant 
  Clique tree potential is always the same 
  We are only reparameterizing clique potentials 

  Constructing clique tree for a BN 
  from elimination order 
  from triangulated (chordal) graph 

  Running time (only) exponential in size of largest clique 
  Solve exactly problems with thousands (or millions, or more) of 

variables, and cliques with tens of nodes (or less)  

10-708 – ©Carlos Guestrin 2006 12 

Swinging Couples revisited 

  This is no perfect map in BNs 
  But, an undirected model will be a perfect map 
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Potentials (or Factors) in Swinging 
Couples 
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Computing probabilities in Markov 
networks v. BNs 

  In a BN, can compute prob. of an 
instantiation by multiplying CPTs 

  In an Markov networks, can only 
compute ratio of probabilities directly 
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Normalization for computing 
probabilities 

  To compute actual probabilities, must compute 
normalization constant (also called partition function) 

  Computing partition function is hard! ! Must sum over 
all possible assignments 
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Factorization in Markov networks 

  Given an undirected graph H over variables 
X={X1,...,Xn} 

  A distribution P factorizes over H if 9  
  subsets of variables D1⊆X,…, Dm⊆X, such that the Di are 

fully connected in H 
  non-negative potentials (or factors) φ1(D1),…, φm(Dm) 

  also known as clique potentials 
  such that  

  Also called Markov random field H, or Gibbs 
distribution over H 
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Global Markov assumption in 
Markov networks 

  A path X1 – … – Xk is active when set of variables 
Z are observed if none of Xi 2 {X1,…,Xk} are 
observed (are part of Z)  

  Variables X are separated from Y given Z in 
graph H, sepH(X;Y|Z), if there is no active path 
between any X2X and any Y2Y given Z 

  The global Markov assumption  for a Markov 
network H is 
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The BN Representation Theorem 

Joint probability 
distribution: Obtain 

If conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Independencies are sufficient to obtain BN structure G 

If joint probability 
distribution: Obtain 

Then conditional 
independencies 

in BN are subset of  
conditional  

independencies in P 

Important because:  
Read independencies of P from BN structure G 
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Markov networks representation Theorem 1 

  If you can write distribution as a normalized product of 
factors ) Can read independencies from graph 

Then H is an I-map for P 
If joint probability 

distribution P: 

10-708 – ©Carlos Guestrin 2006 20 

What about the other direction for Markov 
networks ? 

  Counter-example: X1,…,X4 are binary, and only eight assignments 
have positive probability: 

  For example, X1⊥X3|X2,X4: 
  E.g., P(X1=0|X2=0, X4=0) 

  But distribution doesn’t factorize!!!  

If H is an I-map for P Then 
joint probability 
distribution P: 
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Markov networks representation Theorem 2 
(Hammersley-Clifford Theorem) 

  Positive distribution and independencies ) P factorizes 
over graph 

If H is an I-map for P 
and  

P is a positive distribution 
Then 

joint probability 
distribution P: 
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Representation Theorem for 
Markov Networks 

If H is an I-map for P 
and  

P is a positive distribution 
Then 

Then H is an I-map for P 
If joint probability 

distribution P: 

joint probability 
distribution P: 
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Completeness of separation in 
Markov networks 

  Theorem: Completeness of separation 
 For “almost all” distributions that P factorize over Markov 

network H, we have that I(H) = I(P) 
  “almost all” distributions: except for a set of measure zero of 

parameterizations of the Potentials (assuming no finite set of 
parameterizations has positive measure) 

  Analogous to BNs 

10-708 – ©Carlos Guestrin 2006 24 

What are the “local” independence 
assumptions for a Markov network? 

  In a BN G: 
  local Markov assumption: variable independent of 

non-descendants given parents  
  d-separation defines global independence 
  Soundness: For all distributions:   

  In a Markov net H: 
  Separation defines global independencies 
  What are the notions of local independencies? 
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Local independence assumptions 
for a Markov network 

  Separation defines global independencies 

  Pairwise Markov Independence: 
  Pairs of non-adjacent variables A,B are independent given all 

others 

  Markov Blanket:  
  Variable A independent of rest given its neighbors 

T1 

T3 T4 

T5 T6 

T2 

T7 T8 T9 
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Equivalence of independencies in 
Markov networks 

  Soundness Theorem: For all positive distributions P, 
the following three statements are equivalent: 
 P entails the global Markov assumptions 

 P entails the pairwise Markov assumptions 

 P entails the local Markov assumptions (Markov blanket) 



14 

10-708 – ©Carlos Guestrin 2006 27 

Minimal I-maps and Markov 
Networks 

  A fully connected graph is an I-map 
  Remember minimal I-maps? 

  A “simplest” I-map ! Deleting an edge makes it no longer an I-map  

  In a BN, there is no unique minimal I-map 

  Theorem: For positive distributions & Markov network, minimal I-map is 
unique!! 

  Many ways to find minimal I-map, e.g., 
  Take pairwise Markov assumption: 
  If P doesn’t entail it, add edge: 
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How about a perfect map? 

  Remember perfect maps? 
  independencies in the graph are exactly the same as those in P 

  For BNs, doesn’t always exist 
  counter example: Swinging Couples 

  How about for Markov networks? 
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Unifying properties of BNs and MNs 

  BNs: 
  give you: V-structures, CPTs are conditional probabilities, can 

directly compute probability of full instantiation 
  but: require acyclicity, and thus no perfect map for swinging 

couples 

  MNs: 
  give you: cycles, and perfect maps for swinging couples 
  but: don’t have V-structures, cannot interpret potentials as 

probabilities, requires partition function 

  Remember PDAGS??? 
  skeleton + immoralities 
  provides a (somewhat) unified representation 
  see book for details 
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What you need to know so far 
about Markov networks 

  Markov network representation: 
  undirected graph 
  potentials over cliques (or sub-cliques) 
  normalize to obtain probabilities 
  need partition function 

  Representation Theorem for Markov networks 
  if P factorizes, then it’s an I-map 
  if P is an I-map, only factorizes for positive distributions  

  Independence in Markov nets: 
  active paths and separation 
  pairwise Markov and Markov blanket assumptions 
  equivalence for positive distributions 

  Minimal I-maps in MNs are unique 
  Perfect maps don’t always exist 
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Some common Markov networks 
and generalizations 

  Pairwise Markov networks 
  A very simple application in computer vision 
  Logarithmic representation 
  Log-linear models 
  Factor graphs 
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Pairwise Markov Networks 

  All factors are over single variables or pairs of 
variables: 
  Node potentials 
  Edge potentials 

  Factorization: 

  Note that there may be bigger cliques in the 
graph, but only consider pairwise potentials 

T1 

T3 T4 

T5 T6 

T2 

T7 T8 T9 
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A very simple vision application 
  Image segmentation: separate foreground from 

background 
  Graph structure:  

  pairwise Markov net 
  grid with one node per pixel 

  Node potential: 
  “background color” v. “foreground color” 

  Edge potential: 
  neighbors like to be of the same class 
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Logarithmic representation 
  Standard model: 

  Log representation of potential (assuming positive potential): 
  also called the energy function 

  Log representation of Markov net: 
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Log-linear Markov network 
(most common representation) 

  Feature is some function φ[D] for some subset of variables D 
  e.g., indicator function 

  Log-linear model over a Markov network H: 
  a set of features φ1[D1],…, φk[Dk] 

  each Di is a subset of a clique in H 
  two φ’s can be over the same variables 

  a set of weights w1,…,wk 
  usually learned from data 

     
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Structure in cliques 

  Possible potentials for this graph: A 
B 

C 
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Factor graphs 

  Very useful for approximate inference 
  Make factor dependency explicit 

  Bipartite graph: 
  variable nodes (ovals) for X1,…,Xn 
  factor nodes (squares) for φ1,…,φm 
  edge Xi – φj if Xi2 Scope[φj] 

A 
B 

C 
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Summary of types of Markov nets 

  Pairwise Markov networks 
 very common 
 potentials over nodes and edges 

  Log-linear models 
  log representation of potentials 
  linear coefficients learned from data 
 most common for learning MNs 

  Factor graphs 
 explicit representation of factors 

  you know exactly what factors you have 
 very useful for approximate inference 


