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Introducing message passing with division
" JEE—

m Variable elimination (message passing with
multiplication)

message:

belief:

m  Message passing with division: @

Belief:

Belief about separator:

message: @




Factor division

Let X and Y be disjoint set
of variables

Consider two factors:
$4(X,Y) and ¢,(Y)
Factor vy=¢,/¢,

0/0=0

a' | b'| 05 a' | b' | 0625
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a2 | bl| O a2 | 0 a? | bt 0
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ad | b2 | 0.45 a® [ b2 | 0.75
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Lauritzen-Spiegelhalter Algorithm

. ‘akﬁ gelief grogagation)

m Separator potentials

one per edge (same both directions)

holds “last message”
initialized to 1

m Message i—j

what does i think the separator potential

should be?

" Oiyj

update belief for j:

= pushing j to what i thinks about separator

replace separator potential:
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Simplified description
see reading for details




Convergence of Lauritzen-

_ Sﬁiegelhalter Alﬁorithm

m Complexity: Linear in # cliques
for the “right” schedule over edges (leaves to root, e

then root to leaves) o
CCsD
m Corollary: At convergence, every clique CCO
has correct belief <>

VE versus BP in clique trees
* JEE
m VE messages (the one that multiplies)

m BP messages (the one that divides)




Clique tree invariant
* JE
m Clique tree potential:
Product of clique potentials divided by separators potentials

m Clique tree invariant:
P(X) = n7(X)

Belief propagation and clique tree

B} invaﬁant

m Theorem: Invariant is maintained by BP algorithm!

m BP reparameterizes clique potentials and
separator potentials

At convergence, potentials and messages are marginal
distributions




Subtree correctness
* JEEE
m Informed message from i to j, if all messages into i

(other than from j) are informed

Recursive definition (leaves always send informed
messages)

m Informed subtree:
All incoming messages informed

m Theorem:
Potential of connected informed subtree T’ is marginal over
scope[T]

m Corollary:

At convergence, clique tree is calibrated
s 7, = P(scope[x))
= u; = P(scope[w])
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Clique trees versus VE
" JEE
m Clique tree advantages
Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

m Clique tree disadvantages
Space requirements — no factors are “deleted”
Slower for single query

Local structure in factors may be lost when they are
multiplied together into initial clique potential
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Clique tree summary
* JEE

m Solve marginal queries for all variables in only twice the
cost of query for one variable
m Cliques correspond to maximal cliques in induced graph
m Two message passing approaches
VE (the one that multiplies messages)
BP (the one that divides by old message)
m Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials
m Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph
m Running time (only) exponential in size of largest clique

Solve exactly problems with thousands (or millions, or more) of
variables, and cliques with tens of nodes (or less)
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Swinging Couples revisited
" JEE

m This is no perfect map in BNs

m But, an undirected model will be a perfect map
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Potentials (or Factors) in Swinging

o2 B.C a|C,.D ¢: D, A

% \ 5oe" o100 ' d 1 d’ a” 100
YR ; ! 100 o
<D/' \P / 1 B 1 100 1
\ 1 Boet 100 1 100
N,
—@©C;i 13

Computing probabilities in Markov

B} nﬁ;wgrks v. BNs

m |n a BN, can compute prob. of an
instantiation by multiplying CPTs

m In an Markov networks, can only A e

é|C,D DA
compute ratio of probabilities directly @ P 3 P @ 100 e & 100
Seiove i|o ;:::‘ 1
10 100 d 1 100
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Normalization for computing

. JRrobabilities

o Assignment | Unnormalized | Normalized
m  To compute actual probabilities, must compute A G 300000 0.01
. . iy . a’ | b0 || dt 300000 0.04
normalization constant (also called partition function) a0 [t [0 300000 0.04
a’ | b0 | et | d 30 4.1-1079
a’ [t || d 500 6.9.107°
a® [ b | O | a 500 6.9.107°
a’ [t et | d° 5000000 0.69
a’ | b | et | d 500 6.9.107°
a' | b0 | O 100 1.4-107°
a' | b0 |0 | dt 1000000 0.14
a' [0 et | 100 1.4.107°
a' || et | d 100 1.4-107%
a' | ot | d 10 14-107¢
a' | b || d 100000 0.014
a' | bt et | d® 100000 0.014
a | pr et | dt 100000 0.014
m  Computing partition function is hard! — Must sum over A
all possible assignments /;&
P44 S
(o) (&)
\C {
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" JE—
m  Given an undirected graph H over variables
X={Xy,....X.}

m A distribution P factorizes over H if 3
subsets of variables D,CX,..., D,,CX, such that the D; ar
fully connected in H
non-negative potentials (or factors) ¢,(D,),..., ¢,,(Dm)
= also known as clique potentials
such that

m Also called Markov random field H, or Gibbs
distribution over H
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Global Markov assumption in

B Markgv ngtwgrk;

m  Apath X; — ... — X, is active when set of variables
Z are observed if none of X; € {X;,...,X,} are
observed (are part of Z)

m  Variables X are separated from Y given Z in
graph H, sep,(X;Y|Z), if there is no active path
between any XeX and any YeY given Z

m  The global Markov assumption for a Markov
network H is
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The BN Representation Theorem

" 0000000
If conditional . )
indgsgnééonr:;?es Joint probability
distribution:
in BN are subset of Istribution
conditional "
independencies in P P(X1,...,Xp) = il;Ilp (XZ- \ ani)

Important because:
Independencies are sufficient to obtain BN structure G

Then conditional

Ifjoi.nt propability independencies
distribution: in BN are subset of
| conditional

n
P(X1,..., Xn) = il;ll P(Xi|Pax) independencies in P

Important because:
Read independencies of P from BN structure G
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Markov networks representation Theorem 1
A

If joint probability
distributionﬁ: His an I-map for P
1
P(Xy,...,Xn) = — [[¢:®D))
i=1

m If you can write distribution as a normalized product of
factors = Can read independencies from graph
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What about the other direction for Markov
networks ?

B
joint probability
If His an |-map for P distribution P:
1

m Counter-example: X,,...,X, are binary, and only eight assignments

have positive probability:  (00,00) (1,0,0,0) (1,10,0) " (1,1,1,0)
(0,0,0,1) (0,0,1,1) (0,1,1,1) (1,1,1,1)

m For example, X LX;5|X;,,X,:
E.g., P(X;=0]X,=0, X,=0)

m But distribution doesn’t factorize!!!
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Markov networks representation Theorem 2

SHammersIex-CIifford Theorem)

If His an I-map for P joint probability
and distribution P:
P is a positive distribution 1
P(X1,...,Xn) = 7 il;[l%‘(Di)

m Positive distribution and independencies =- P factorizes
over graph

21

Representation Theorem for

. Markov Networks
If joint probability

distribution P: m His an I-map for P
)

P(X1,...,X,) = % ] ¢:D:
=1

If His an I-map for P joint probability
and distribution P:

P is a positive distribution 1
i=1

22
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Completeness of separation in

B I\/Iarkgv ngtwgrks

m Theorem: Completeness of separation

For “almost all” distributions that P factorize over Markov
network H, we have that I(H) = |(P)

“almost all” distributions: except for a set of measure zero of
parameterizations of the Potentials (assuming no finite set of
parameterizations has positive measure)

m Analogous to BNs
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What are the “local” independence

. gassumptions for a Markov network?

m InaBN G:

local Markov assumption: variable independent of
non-descendants given parents

d-separation defines global independence
Soundness: For all distributions:

m |n a Markov net H:
Separation defines global independencies
What are the notions of local independencies?
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Local independence assumptions

B fgra Markgv ngtwork

m Separation defines global independencies

m Pairwise Markov Independence: e
Pairs of non-adjacent variables A,B are independent given all e

others

m Markov Blanket: G @ @

Variable A independent of rest given its neighbors

Equivalence of independencies in

B} Markgv networks

m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:
P entails the global Markov assumptions

P entails the pairwise Markov assumptions

P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov

B Ngtwgrki

m A fully connected graph is an I-map
m Remember minimal I-maps?
A “simplest” I-map — Deleting an edge makes it no longer an |I-map

m In a BN, there is no unique minimal I-map

m Theorem: For positive distributions & Markov network, minimal I-map is
unique!!
m  Many ways to find minimal I-map, e.g.,
Take pairwise Markov assumption:
If P doesn’t entail it, add edge:
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How about a perfect map?
“ JE
m Remember perfect maps?
independencies in the graph are exactly the same as those in P

m For BNs, doesn’t always exist
counter example: Swinging Couples

m How about for Markov networks?
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Unifying properties of BNs and MNs

= JEE
m BNs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

m MNs:
give you: cycles, and perfect maps for swinging couples

but: don’t have V-structures, cannot interpret potentials as
probabilities, requires partition function

m Remember PDAGS?7??
skeleton + immoralities
provides a (somewhat) unified representation
see book for details
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What you need to know so far

. 2bout Markov networks

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function
Representation Theorem for Markov networks
if P factorizes, then it's an I-map
if P is an I-map, only factorizes for positive distributions
Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions
Minimal I-maps in MNs are unique

Perfect maps don’t always exist
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Some common Markov networks

B ﬁ”ﬂ ggngrﬁlizgtig)ns

m Pairwise Markov networks

m A very simple application in computer vision
m Logarithmic representation

m Log-linear models

m Factor graphs

Pairwise Markov Networks
" JEE

m All factors are over single variables or pairs of G
variables:
Node potentials G

Edge potentials
m Factorization:

\J

m Note that there may be bigger cliques in the
graph, but only consider pairwise potentials
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A very simple vision application
"

m Image segmentation: separate foreground from
background
m  Graph structure:
pairwise Markov net
grid with one node per pixel

m Node potential:
“background color” v. “foreground color”

m Edge potential:
neighbors like to be of the same class
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Logarithmic representation
“ JE

m Standard model: 145
P(X4,...,.X,) == (D
( 1, ) ) Z g¢( )

m Log representation of potential (assuming positive potential):
also called the energy function

m Log representation of Markov net:
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Log-linear Markov network

. Smost common representation)

m Feature is some function ¢[D] for some subset of variables D
e.g., indicator function

m Log-linear model over a Markov network H:
a set of features ¢[D],..., O [Dy]
= each D, is a subset of a clique in H
= two ¢’s can be over the same variables
a set of weights wy,...,w,
= usually learned from data

k
P(X1,..., Xn) = %exp {Z w;p; (Di)}

i=1

Structure in cliques
* JEE
m Possible potentials for this graph:
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Factor graphs z'e
" JE

m Very useful for approximate inference
Make factor dependency explicit
m Bipartite graph:
variable nodes (ovals) for X,,...,X,
factor nodes (squares) for ¢,...,¢,
edge X; — ¢; if X, Scope[¢)]
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Summary of types of Markov nets
" JEE
m Pairwise Markov networks
very common
potentials over nodes and edges
m Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs
m Factor graphs

explicit representation of factors
= you know exactly what factors you have

very useful for approximate inference
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