Junction Trees 3

Undirected Graphical Models

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
October 27 ${ }^{\text {th }}, 2008$

Introducing message passing with division

Factor division

- Let \mathbf{X} and \mathbf{Y} be disjoint set of variables
- Consider two factors:
$\phi_{1}(\mathbf{X}, \mathbf{Y})$ and $\phi_{2}(\mathbf{Y})$
- Factor $\psi=\phi_{1} / \phi_{2}$

a^{1}	b^{1}	0.5				
a^{1}	b^{2}	0.2				
a^{2}	b^{1}	0				
a^{2}	b^{2}	0				
a^{3}	b^{1}	0.3				
a^{3}	b^{2}	0.45	\quad	a^{1}	0.8	
:---:	:---:	:---:	:---:			
a^{2}	0					
a^{3}	0.6					
a^{1}	b^{1}	8.625				
a^{1}	b^{2}	0.25				
a^{2}	b^{1}	0				
a^{2}	b^{2}	0				
a^{3}	b^{1}	0.5				
a^{3}	b^{2}	0.75				

Lauritzen-Spiegelhalter Algorithm

 (ak a belief propagation) simplified description- Separator potentials $\mu_{\text {I }}$
\square one per edge (same both directions)
holds "last message"
initialized to 1

what does i think the separator potentia
wot what does i

update belief for j :
- pushing j to what i thinks about separatorreplace separator potential:

 $\mu_{i j}^{\prime} \in \sigma_{i \rightarrow j}\left(S_{i j}\right)$

Convergence of LauritzenSpiegelhalter Algorithm

- Complexity: Linear in \# cliques
\square for the "right" schedule over edges (leaves to root, then root to leaves)

- Corollary: At convergence, every clique has correct belief

VE versus $B P$ in clique trees

- VE messages (the one that multiplies) $C_{x}=A_{x} \cup S_{k e}$

$\delta_{k \rightarrow e}=\sum_{a_{k}} \pi_{0}\left(C_{k}\right) \delta_{i \rightarrow x} \delta_{j \rightarrow k}$
- BP messages (the one that divides) $k \rightarrow l$

Clique tree invariant

Clique tree potential:

Product of clique potentials divided by separators potentials

$$
\Pi_{T}(x)=\frac{\pi_{i} \pi_{i}\left(c_{i}\right)}{\pi_{i j} \mu_{i j}\left(s_{i j}\right)}
$$

- Clique tree invariant:

$$
\begin{aligned}
& \Pi_{0}\left(C_{i}\right) \text { E product of } \\
& \text { CTs assignedto } \\
& \text { node } i
\end{aligned}
$$

$$
\mathrm{P}(\mathbf{X})=\pi_{T}(\mathbf{X})
$$

$$
\text { at initialization: } \pi_{T}(x)=\Pi_{i} \pi_{0}\left(c_{i}\right)=\prod_{i} p\left(x_{i} \|_{a_{x}} x_{i}\right)
$$

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
\square Recursive definition (leaves always send informed messages)

Informed subtree:

\square All incoming messages informed

- Theorem:

Potential of connected informed subtree T^{\prime} is marginal over scope[T]

- Corollary:

At convergence, clique tree is calibrated

- $\pi_{i}=\mathrm{P}\left(\mathrm{scope}\left[\pi_{\mathrm{i}}\right]\right)$
- $\mu_{\mathrm{ij}}=\mathrm{P}\left(\right.$ scope $\left.\left[\mu_{\mathrm{ij}}\right]\right)$

Clique trees versus VE forithine

- Clique tree advantages

Multi-query settings
\square Incremental updatesPre-computation makes complexity explicit

Clique tree disadvantages
Space requirements - no factors are "deleted"
Slower for single query
Local structure in factors may be lost when they are multiplied together into initial clique potential

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches

VE (the one that multiplies messages)
BP (the one that divides by old message)

- Clique tree invariant
\square Clique tree potential is always the same
We are only reparameterizing clique potentials
- Constructing clique tree for a BN
\square from elimination order
\square from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
\square Solve exactly problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

Swinging Couples revisited

- This is no perfect map in BNs
- But, an undirected model will be a perfect map

Computing probabilities in Markov networks v. BNs

- In a BN, can compute prob. of an $\quad P(X)=\prod_{i} P\left(X_{i} \mid f_{G}\right)$
instantiation by multiplying CPTs

In an Markov networks, can only compute ratio of probabilities directly

\[

\]

Normalization for computing probabilities

- To compute actual probabilities, must compute normalization constant (also called partition function)

$$
\begin{aligned}
& P(A B C D)=\frac{1}{z} \phi_{1}(A B) \phi_{2}(B C) \phi_{3}(C D) \phi_{4}(D A) \\
& Z=\sum_{a} \sum_{b} \sum_{c} \sum_{d} \phi_{1}\left(a_{a} b\right) \phi_{2}(b C) \phi_{3}(c, d) \phi_{4}\left(d_{d}\right)
\end{aligned}
$$

- Computing partition function is hard! \rightarrow Must sum over Can use VE to compute Z if Marka Network has low tree width

all possible assignments

free width

Factorization in Markov networks

- Given an undirected graph H over variables $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$
- A distribution P factorizes over H if 肉 \exists
\square subsets of variables $\mathbf{D}_{1} \subseteq \mathbf{X}, \ldots, \mathbf{D}_{\mathbf{m}} \subseteq \mathbf{X}$, such that the $\mathbf{D}_{\mathbf{i}}$ ar fully connected in H
\square non-negative potentials (or factors) $\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{\mathrm{m}}\left(\mathbf{D}_{\mathrm{m}}\right)$
- also known as clique potentials
\square such that

Also called Markov random field H, or Gibbs distribution over H
 network H is

