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Introducing message passing with division 

  Variable elimination (message passing with 
multiplication) 
  message: 

  belief: 

  Message passing with division: 
  Belief: 

  Belief about separator: 

  message: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 
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Factor division 

  Let X and Y be disjoint set 
of variables 

  Consider two factors: 
φ1(X,Y) and φ2(Y) 

  Factor ψ=φ1/φ2 
  0/0=0 
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  Separator potentials µij 
  one per edge (same both directions) 
  holds “last message” 
  initialized to 1 

  Message i!j 
  what does i think the separator potential 

should be? 
   σi!j 

  update belief for j: 
  pushing j to what i thinks about separator 

  replace separator potential: 

C2: SE 

C4: GJS 

C1: CD 

C3: GDS 

Lauritzen-Spiegelhalter Algorithm  
(a.k.a. belief propagation) Simplified description 

see reading for details 
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Convergence of Lauritzen-
Spiegelhalter Algorithm  

  Complexity: Linear in # cliques 
  for the “right” schedule over edges (leaves to root, 

then root to leaves) 

  Corollary: At convergence, every clique 
has correct belief 

C2 

C4 
C5 

C1 

C3 

C7 
C6 
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VE versus BP in clique trees 

  VE messages (the one that multiplies) 

  BP messages (the one that divides) 
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Clique tree invariant 

  Clique tree potential: 
 Product of clique potentials divided by separators potentials 

  Clique tree invariant: 
 P(X) = πΤ (X) 
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Belief propagation and clique tree 
invariant 

  Theorem: Invariant is maintained by BP algorithm! 

  BP reparameterizes clique potentials and 
separator potentials 
 At convergence, potentials and messages are marginal 

distributions 
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Subtree correctness 

  Informed message from i to j, if all messages into i 
(other than from j) are informed 
 Recursive definition (leaves always send informed 

messages) 
  Informed subtree: 

 All incoming messages informed 
  Theorem: 

 Potential of connected informed subtree T’ is marginal over 
scope[T’] 

  Corollary: 
 At convergence, clique tree is calibrated 

   πi = P(scope[πi]) 
   µij = P(scope[µij]) 
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Clique trees versus VE 

  Clique tree advantages 
 Multi-query settings 
  Incremental updates 
 Pre-computation makes complexity explicit 

  Clique tree disadvantages 
 Space requirements – no factors are “deleted” 
 Slower for single query 
 Local structure in factors may be lost when they are 

multiplied together into initial clique potential 
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Clique tree summary 
  Solve marginal queries for all variables in only twice the 

cost of query for one variable 
  Cliques correspond to maximal cliques in induced graph 
  Two message passing approaches 

  VE (the one that multiplies messages) 
  BP (the one that divides by old message) 

  Clique tree invariant 
  Clique tree potential is always the same 
  We are only reparameterizing clique potentials 

  Constructing clique tree for a BN 
  from elimination order 
  from triangulated (chordal) graph 

  Running time (only) exponential in size of largest clique 
  Solve exactly problems with thousands (or millions, or more) of 

variables, and cliques with tens of nodes (or less)  
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Swinging Couples revisited 

  This is no perfect map in BNs 
  But, an undirected model will be a perfect map 
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Potentials (or Factors) in Swinging 
Couples 
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Computing probabilities in Markov 
networks v. BNs 

  In a BN, can compute prob. of an 
instantiation by multiplying CPTs 

  In an Markov networks, can only 
compute ratio of probabilities directly 
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Normalization for computing 
probabilities 

  To compute actual probabilities, must compute 
normalization constant (also called partition function) 

  Computing partition function is hard! ! Must sum over 
all possible assignments 

10-708 – ©Carlos Guestrin 2006 16 

Factorization in Markov networks 

  Given an undirected graph H over variables 
X={X1,...,Xn} 

  A distribution P factorizes over H if 9  
  subsets of variables D1⊆X,…, Dm⊆X, such that the Di are 

fully connected in H 
  non-negative potentials (or factors) φ1(D1),…, φm(Dm) 

  also known as clique potentials 
  such that  

  Also called Markov random field H, or Gibbs 
distribution over H 
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Global Markov assumption in 
Markov networks 

  A path X1 – … – Xk is active when set of variables 
Z are observed if none of Xi 2 {X1,…,Xk} are 
observed (are part of Z)  

  Variables X are separated from Y given Z in 
graph H, sepH(X;Y|Z), if there is no active path 
between any X2X and any Y2Y given Z 

  The global Markov assumption  for a Markov 
network H is 


