

Independencies encoded in BN

- We said: All you need is the local Markov assumption
$\square\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{xi}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}\right)$
- But then we talked about other (in)dependencies
\square e.g., explaining away
$A \rightarrow B \rightarrow C \rightarrow D$
$A \perp D \mid B$

- What are the independencies encoded by a BN?

Only assumption is local Markov
But many others can be derived using the algebra of conditional independencies!!!

An active trail - Example

When are A and H independent?

Active trails formalized

- A trail $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail when variables $\mathbf{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed if for each consecutive triplet in the trail:
$\square X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \mathbf{O}$)
$\square X_{i-1} \leftarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is not observed $\left(X_{i} \notin \mathbf{O}\right)$
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed $\left(\mathrm{X}_{\mathrm{i}} \notin \mathbf{O}\right)$
$\square X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in O$), or one of its descendents

Active trails and independence?

- Theorem: Variables X_{i} and X_{j} are independent given $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ if the is no active trail between X_{i} and X_{j} when variables $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

More generally:
 Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:

$$
\square \mathbf{I}(G)=\left\{(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}): d-\operatorname{sep}_{G}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})\right\}
$$

- Theorem: Soundness of d-separation
\square If P factorizes over G then $I(G) \subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

Existence of dependency when not d-separated

- Theorem: If X and Y are not d-separated given \mathbf{Z}, then X and Y are dependent given \mathbf{Z} under some P that factorizes over G
- Proof sketch:

Choose an active trail between X and Y given Z Make this trail dependent
Make all else uniform
 (independent) to avoid "canceling" out influence

More generally:
 Completeness of d-separation

- Theorem: Completeness of d-separation
\square For "almost all" distributions where P factorizes over to G, we have that $I(G)=I(P)$
- "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
- Means that if all sets \mathbf{X} \& \mathbf{Y} that are not d-separated given \mathbf{Z}, then $\neg(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Proof sketch for very simple case:

Interpretation of completeness

- Theorem: Completeness of d-separation

For "almost all" distributions that P factorize over to G, we have that $I(G)=I(P)$

- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
$P \rightarrow(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z}), \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})$
- Often we have context-specific independence (CSI)
$\square \exists \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z}): P \rightarrow(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z})$
Many factors may affect your grade
\square But if you are a frequentist, all other factors are irrelevant ©

Algorithm for d-separation

- How do I check if X and Y are dseparated given \mathbf{Z}
\square There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X
- 1. Upward pass
\square Mark descendants of \mathbf{Z}
- 2. Breadth-first traversal from X Stop traversal at a node if trail is "blocked"
(Some tricky details apply - see reading)

What you need to know

- d-separation and independence
sound procedure for finding independencies
\square existence of distributions with these independencies
\square (almost) all independencies can be read directly from graph without looking at CPTs

Announcements

- Homework 1:
\square Due next Wednesday - beginning of class!
\square It's hard - start early, ask questions
- Audit policy
\square No sitting in, official auditors only, see course website

Building BNs from independence properties

- From d-separation we learned:

Start from local Markov assumptions, obtain all independence assumptions encoded by graph
For most P 's that factorize over $G, I(G)=I(P)$
All of this discussion was for a given G that is an I-map for P

Now, give me a P, how can I get a G ?
i.e., give me the independence assumptions entailed by P

Many G are "equivalent", how do I represent this?
Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms

- Practical algs next time

Minimal I-maps

- One option:
G is an I-map for P
$\square G$ is as simple as possible
- G is a minimal l-map for P if deleting any edges from G makes it no longer an I-map

Obtaining a minimal I-map

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
For $\mathrm{i}=1$ to n
\square Add X_{i} to the network
\square Define parents of $X_{i}, P a_{x_{X}}$, in graph as the minimal subset of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that local Markov assumption holds - X_{i} independent of rest of $\left\{\mathrm{X}_{1}\right.$ $\left., \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$, given parents $\mathrm{Pa}_{\mathrm{X}_{\mathrm{i}}}$ \square Define/learn CPT - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Minimal I-map not unique (or minimum)

- Given a set of variables and assumptions
- Choose an ordering on variables, e.g., $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- For $\mathrm{i}=1$ to n
\square Add X_{i} to the network
\square Define parents of $X_{i}, \mathrm{~Pa}_{\mathrm{X}}$, in graph as the minimal subset of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that local Markov assumption holds $-X_{i}$ independent of rest of $\left\{\mathrm{X}_{1}\right.$ $\left., \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$, given parents $\mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}$
Define/learn CPT - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Perfect maps (P-maps)

- I-maps are not unique and often not simple enough

■ Define "simplest" G that is I-map for P
A BN structure G is a perfect map for a distribution P if $I(P)=I(G)$

- Our goal:

Find a perfect map!
Must address equivalent BNs

Inexistence of P-maps 1

- XOR (this is a hint for the homework)

Inexistence of P-maps 2

■ (Slightly un-PC) swinging couples example

Obtaining a P-map

- Given the independence assertions that are true for P
- Assume that there exists a perfect map G^{*}
\square Want to find G^{*}
- Many structures may encode same independencies as G^{*}, when are we done?

Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_{1} and G_{2} are I-equivalent if $\mathrm{I}\left(G_{1}\right)=\mathrm{I}\left(G_{2}\right)$
- Equivalence class of BN structures
\square Mutually-exclusive and exhaustive partition of graphs
- How do we characterize these equivalence classes?

Skeleton of a BN

- Skeleton of a BN structure G is an undirected graph over the same variables that has an edge $\mathrm{X}-\mathrm{Y}$ for every $\mathrm{X} \rightarrow \mathrm{Y}$ or $\mathrm{Y} \rightarrow \mathrm{X}$ in G
- (Little) Lemma: Two I -equivalent BN structures must have the same skeleton

- Theorem: If G_{1} and G_{2} have the same skeleton and V-structures, then G_{1} and G_{2} are I-equivalent

Same V-structures not necessary

- Theorem: If G_{1} and G_{2} have the same skeleton and V-structures, then G_{1} and G_{2} are l-equivalent
- Though sufficient, same V -structures not necessary

Immoralities \& I-Equivalence

- Key concept not V-structures, but "immoralities" (unmarried parents ©)
$\square X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
\square Important pattern: X and Y independent given their parents, but not given Z
\square (If edge exists between X and Y , we have covered the V-structure)
- Theorem: G_{1} and G_{2} have the same skeleton and immoralities if and only if G_{1} and G_{2} are I-equivalent

Obtaining a P-map

- Given the independence assertions that are true for P
\square Obtain skeleton
\square Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

- When is there an edge between X and Y ?
- When is there no edge between X and Y ?

Identifying the skeleton 2

Assume d is max number of parents (d could be n)

- For each X_{i} and X_{j}
$\square \mathrm{E}_{\mathrm{ij}} \leftarrow$ true
\square For each $\mathbf{U} \subseteq \mathbf{X}-\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\},|\mathbf{U}| \leq \mathrm{d}$ - Is $\left(\mathrm{X}_{\mathrm{i}} \perp \mathrm{X}_{\mathrm{j}} \mid \mathrm{U}\right)$?
$\mathrm{E}_{\mathrm{ij}} \leftarrow$ false
\square If E_{ij} is true
- Add edge X - Y to skeleton

Identifying immoralities

- Consider $\mathrm{X}-\mathrm{Z}-\mathrm{Y}$ in skeleton, when should it be an immorality?

■ Must be $X \rightarrow Z \leftarrow Y$ (immorality):
\square When X and Y are never independent given \mathbf{U}, if $\mathrm{Z} \in \mathbf{U}$

- Must not be $X \rightarrow Z \leftarrow Y$ (not immorality):

When there exists \mathbf{U} with $Z \in \mathbf{U}$, such that X and Y are independent given \mathbf{U}

From immoralities and skeleton to BN structures

- Representing BN equivalence class as a partially-directed acyclic graph (PDAG)
- Immoralities force direction on some other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

- Minimal I-map
\square every P has one, but usually many
- Perfect map
\square better choice for BN structure
\square not every P has one
\square can find one (if it exists) by considering l-equivalence
Two structures are I-equivalent if they have same skeleton and immoralities

