

A general Bayes net

- Set of random variables
- Directed acyclic graph
- CPTs
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

- Local Markov Assumption:
\square A variable X is independent of its non-descendants given its

Questions????

What distributions can be represented by a BN?

- What BNs can represent a distribution?
- What are the independence assumptions encoded in a BN?
in addition to the local Markov assumption

Independencies in Problem

Key Representational Assumption:

Today: The Representation Theorem -
 True Independencies to BN Factorization

BN:

If conditional independencies in BN are subset of conditional independencies in P

Joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Let's start proving it for naïve Bayes -
 From True Independencies to BN Factorization

- Independence assumptions:
$\square X_{i}$ independent given C
- Let's assume that P satisfies independencies must prove that P factorizes according to BN :
$P\left(C, X_{1}, \ldots, X_{n}\right)=P(C) \prod_{i} P\left(X_{i} \mid C\right)$
■ Use chain rule!

Let's start proving it for naïve Bayes -
 From BN Factorization to True Independencies

- Let's assume that P factorizes according to the BN:
$\square \mathrm{P}\left(\mathrm{C}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\mathrm{P}(\mathrm{C}) \prod_{i} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{C}\right)$
- Prove the independence assumptions:
$\square \mathrm{X}_{\mathrm{i}}$ independent given C
\square Actually, $(\mathbf{X} \perp \mathbf{Y} \mid \mathrm{C}), \forall \mathbf{X}, \mathbf{Y}$ subsets of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

Local Markov assumption \& I-maps

- Local independence assumptions in BN structure G:
- Independence assertions of P :
- BN structure G is an I-map (independence map) if:

Local Markov Assumption:
A variable X is independent of its non-descendants given its parents and only its parents
(Xi \perp NonDescendants $_{x_{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}$)

Factorized distributions

- Given

Random vars $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
P distribution over vars
BN structure G over same vars

- P factorizes according to G if

$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)$

BN Representation Theorem -I-map to factorization

If conditional
independencies in BN are subset of conditional independencies in P
G is an I-map of P

Obtain
Joint probability distribution:

$$
P\left(x_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathbf{P a}_{x_{i}}\right)
$$

P factorizes according to G

BN Representation Theorem -I-map to factorization: Proof, part 1

Topological Ordering:

- Number variables such that:
\square parent has lower number than child
i.e., $X_{i} \rightarrow X_{j} \Rightarrow i<j$

Key: variable has lower number than all of its

- DAGs always have (many) topological
 orderings
\square find by a modification of breadth first search

Defining a BN

- Given a set of variables and conditional independence assertions of P
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n
\square Add X_{i} to the network
\square Define parents of $X_{i}, \mathrm{~Pa}_{\mathrm{X}_{\mathrm{i}}}$, in graph as the minimal subset of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ such that local Markov assumption holds - X_{i} independent of rest of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$, given parents $\mathrm{Pa}_{\mathrm{Xi}_{\mathrm{i}}}$
\square Define/learn CPT - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}\right)$

Adding edges doesn't hurt

- Theorem: Let \mathbf{G} be an I-map for \boldsymbol{P}, any DAG G' that includes the same directed edges as \mathbf{G} is also an I-map for \boldsymbol{P}.
\square Corollary 1: _ is strictly more expressive than \qquad
Corollary 2: If G is an I-map for P, then adding edges still an I-map
- Proof:

Announcements

- Homework 1:
\square Out today
\square Due in 2 weeks - beginning of class!
\square It's hard - start early, ask questions
- Collaboration policy
\square OK to discuss in groups
\square Tell us on your paper who you talked with
\square Each person must write their own unique paper
\square No searching the web, papers, etc. for answers, we trust you want to learn
- Audit policy
\square No sitting in, official auditors only, see course website
- Recitation tomorrow
\square Wean 5409, 5pm

BN Representation Theorem Factorization to I-map

 distribution:

Obtain
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$
Then conditional independencies in BN are subset of conditional independencies in P

> | P factorizes |
| :--- |
| according to G |

BN Representation Theorem Factorization to I-map: Proof

Then conditional
If joint probability distribution:

Obtain
independencies in BN are subset of conditional

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

G is an I-map of P

Homework 1!!!! :

The BN Representation Theorem

If conditional
independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

Important because:
Every P has at least one BN structure G

| If joint probability
 distribution: | Obtain |
| :---: | :---: | | Then conditional
 independencies
 in BN are subset of
 conditional |
| :---: |
| $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$ |

Important because:
Read independencies of P from BN structure G

What you need to know thus far

- Independence \& conditional independence
- Definition of a BN
- Local Markov assumption
- The representation theorems

Statement: G is an I-map for P if and only if P factorizes according to G
Interpretation

Independencies encoded in BN

- We said: All you need is the local Markov assumption
$\square\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{x}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$
- But then we talked about other (in)dependencies
\square e.g., explaining away
- What are the independencies encoded by a BN?

Only assumption is local Markov
But many others can be derived using the algebra of conditional independencies!!!

An active trail - Example

When are A and H independent?

Active trails formalized

- A trail $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail when variables $\mathbf{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed if for each consecutive triplet in the trail:
$\square X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \mathbf{O}$)
$\square X_{i-1} \leftarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is not observed $\left(X_{i} \notin \mathbf{O}\right)$
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed $\left(\mathrm{X}_{\mathrm{i}} \notin \mathbf{O}\right)$
$\square X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in O$), or one of its descendents

Active trails and independence?

- Theorem: Variables X_{i} and X_{j} are independent given $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ if the is no active trail between X_{i} and X_{j} when variables $\mathbf{Z} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

More generally:
 Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:

$$
\square \mathbf{I}(G)=\left\{(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}): d-\operatorname{sep}_{G}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})\right\}
$$

- Theorem: Soundness of d-separation
\square If P factorizes over G then $I(G) \subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

Existence of dependency when not d-separated

- Theorem: If X and Y are not d-separated given \mathbf{Z}, then X and Y are dependent given \mathbf{Z} under some P that factorizes over G
- Proof sketch:

Choose an active trail between X and Y given Z Make this trail dependent
Make all else uniform
 (independent) to avoid "canceling" out influence

More generally:
 Completeness of d-separation

- Theorem: Completeness of d-separation
\square For "almost all" distributions where P factorizes over to G, we have that $I(G)=I(P)$
- "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
- Means that if all sets \mathbf{X} \& \mathbf{Y} that are not d-separated given \mathbf{Z}, then $\neg(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Proof sketch for very simple case:

Interpretation of completeness

- Theorem: Completeness of d-separation

For "almost all" distributions that P factorize over to G, we have that $I(G)=I(P)$

- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
$P \rightarrow(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z}), \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})$
■ Often we have context-specific independence (CSI)
$\square \exists \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z}): P \rightarrow(\mathbf{X}=\mathbf{x} \perp \mathbf{Y}=\mathbf{y} \mid \mathbf{Z}=\mathbf{z})$
Many factors may affect your grade
\square But if you are a frequentist, all other factors are irrelevant :)

Algorithm for d-separation

- How do I check if X and Y are dseparated given \mathbf{Z}
\square There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X
- 1. Upward pass
\square Mark descendants of \mathbf{Z}
- 2. Breadth-first traversal from X Stop traversal at a node if trail is "blocked"
(Some tricky details apply - see reading)

What you need to know

- d-separation and independence
sound procedure for finding independencies
\square existence of distributions with these independencies
\square (almost) all independencies can be read directly from graph without looking at CPTs

