BN Semantics 1

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
September $15^{\text {th }}$, 2008

Let's start on CNs...

- Consider $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right) \in$
\square Assign probability to each $\underline{x}_{i} \in \operatorname{Val}\left(X_{i}\right)$
\square Independent parameters $\left|V_{a}\right|\left(x_{i}\right) \mid=k$
K-1
- Consider $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
\square How many independent parameters if $\left|\operatorname{Val}\left(X_{i}\right)\right|=k$?
$K^{n}-1$
same thing w-flews paras $1 B N$

What if variables are independent?

- What if variables are independent?
$\square\left(X_{i} \perp X_{j}\right), \forall i, j$
\square Not enough!!! (See homework 1 ©)
\square Must assume that $(\underline{\mathbf{X} \perp \mathbf{Y}}), \forall \underline{\mathbf{X}, \mathbf{Y} \text { subsets } \text { of }\left\{X_{1}, \ldots, X_{n}\right\}}$ $x_{1} x_{3} \perp x_{7} x_{14}$ $x_{1} x_{14} \perp x_{3} x_{2} x_{5}$
- Can write

$$
\underline{\underline{P\left(X_{1}, \ldots, X_{n}\right)}}=\underline{\prod_{i=1 \ldots n}^{B N W_{1} n} P\left(X_{i}\right)}
$$

- How many independent parameters now?
$n .(k-1)$

Conditional parameterization two nodes

- Grade is determined by Intelligence

The naïve Bayes model Your first real Bayes Net

- Class variable: C
- Evidence variables: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- assume that ($\mathbf{X} \perp \mathbf{Y} \mid \mathrm{C}$), $\forall \mathbf{X}, \mathrm{Y}$ subsets of $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

What you need to know (From last class)

- Basic definitions of probabilities
- Independence
- Conditional independence
- The chain rule
- Bayes rule
- Naïve Bayes

This class

- We've heard of Bayes nets, we've played with Bayes nets, we've even used them in your research
- This class, we'll learn the semantics of BNs, relate them to independence assumptions encoded by the graph

Causal structure

- Suppose we know the following:
\square The flu causes sinus inflammation
Allergies cause sinus inflammation
Sinus inflammation causes a runny nose
Sinus inflammation causes headaches
- How are these connected?

(Marginal) Independence

Flu and Allergy are (marginally) independent

Flu $=\mathrm{t}$	
Flu $=\mathrm{f}$	

- More Generally:

	Flu $=\mathrm{t}$	Flu = f
Allergy $=\mathrm{t}$		
Allergy $=\mathrm{f}$		

Conditional independence

- Flu and Headache are not (marginally) independent
- Flu and Headache are independent given Sinus infection
- More Generally:

A general Bayes net

- Set of random variables
- Directed acyclic graph
- CPTs
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

- Local Markov Assumption:

A variable X is independent of its non-descendants given its parents and only its parents - ($\mathbf{X i} \perp$ NonDescendants $\mathbf{X i} \mid \mathbf{P a X i})$

Announcements

- Homework 1:
\square Out wednesday
\square Due in 2 weeks - beginning of class!
$\square \mathrm{lt}$'s hard - start early, ask questions
- Collaboration policy

OK to discuss in groups
Tell us on your paper who you talked with
\square Each person must write their own unique paper
\square No searching the web, papers, etc. for answers, we trust you want to learn

- Audit policy
\square No sitting in, official auditors only, see couse website
- Don't forget to register to the mailing list at:
\square https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

Questions????

What distributions can be represented by a BN?

- What BNs can represent a distribution?
- What are the independence assumptions encoded in a BN?
in addition to the local Markov assumption

Today: The Representation Theorem BN to Joint Distribution

BN:

Encodes independence assumptions

If joint probability distribution:
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$

Then conditional independencies in BN are subset of conditional independencies in P

```
    Let's start proving it for naïve Bayes -
    From joint distribution to BN
- Independence assumptions:
\(\square \mathrm{X}_{\mathrm{i}}\) independent given C
- Let's assume that \(P\) satisfies independencies must prove that \(P\) factorizes according to BN :
```

```
\square P ( C , X _ { 1 } , \ldots , X _ { n } ) = P ( C ) \Pi _ { i } P ( X _ { i } \| C )
```

\square P (C , X _ { 1 } , ··· , X _ { n }) = P (C) \Pi _ { i } P (X _ { i } \| C)
■ Use chain rule!

```

\section*{Let's start proving it for naïve Bayes From BN to joint distribution}
- Let's assume that \(P\) factorizes according to the BN :
\(\square P\left(C, X_{1}, \ldots, X_{n}\right)=P(C) \prod_{i} P\left(X_{i} \mid C\right)\)
- Prove the independence assumptions:
\(\square \mathrm{X}_{\mathrm{i}}\) independent given C
\(\square\) Actually, \((\mathbf{X} \perp \mathbf{Y} \mid C), \forall \mathbf{X}, \mathbf{Y}\) subsets of \(\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}\)


\section*{Local Markov assumption \& I-maps}
- Local independence assumptions in BN structure G:
- Independence assertions of \(P\) :
- BN structure G is an l-map (independence map) if:


> Local Markov Assumption: A variable \(X\) is independent of its non-descendants given its parents and only its parents \(\left(\mathrm{Xi}_{\mathrm{i}} \perp\right.\) NonDescendants \({ }_{\mathrm{xi}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{x}} \mathrm{l}}\) )

\section*{Factorized distributions}
- Given

Random vars \(X_{1}, \ldots, X_{n}\)
\(\square P\) distribution over vars
\(\square\) BN structure G over same vars
- \(P\) factorizes according to \(G\) if

\[
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
\]

\section*{BN Representation Theorem -I-map to factorization}

If conditional
independencies in BN are subset of conditional independencies in \(P\)
\(G\) is an I-map of \(P\)

Joint probability distribution:
\[
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
\]
\(P\) factorizes according to \(G\)


\section*{Defining a BN}
- Given a set of variables and conditional independence assertions of \(P\)
- Choose an ordering on variables, e.g., \(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\)
- For \(\mathrm{i}=1\) to n
\(\square\) Add \(X_{i}\) to the network
\(\square\) Define parents of \(X_{i}, P a_{x_{\mathrm{i}}}\), in graph as the minimal subset of \(\left\{X_{1}, \ldots, X_{i-1}\right\}\) such that local Markov assumption holds \(-X_{i}\) independent of rest of \(\left\{X_{1}\right.\), \(\left.\ldots, \mathrm{X}_{\mathrm{i}-1}\right\}\), given parents \(\mathrm{Pa}_{\mathrm{xi}}\)
Define/learn CPT - \(\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)\)

\section*{BN Representation Theorem Factorization to I-map}
\(P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)\)

Then conditional independencies in BN are subset of conditional independencies in \(P\)
Obtain
Then conditional
independencies
in BN are subset of
conditional
independencies in \(P\)

\section*{BN Representation Theorem Factorization to l-map: Proof}

Then conditional
If joint probability distribution:

Obtain
independencies in BN are subset of conditional
\[
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
\]
\[
\text { independencies in } P
\]

\section*{\(G\) is an I-map of \(P\)}

\section*{Homework 1!!!! ©}

\section*{The BN Representation Theorem}

If conditional
independencies in BN are subset of conditional independencies in \(P\)

\section*{Obtain}

Joint probability distribution:
\[
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
\]

Important because:
Every P has at least one BN structure G
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
If joint probability \\
distribution:
\end{tabular} & Obtain
\end{tabular} \begin{tabular}{c}
\begin{tabular}{c} 
Then conditional \\
independencies \\
in BN are subset of \\
conditional
\end{tabular} \\
\(P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)\)
\end{tabular}

Important because:
Read independencies of \(P\) from BN structure \(G\)

\section*{Acknowledgements}
- JavaBayes applet
http://www.pmr.poli.usp.br/Itd/Software/javabayes/ Home/index.html```

