Discussion on Logistic Regression and Naïve Bayes

Jingrui He 09/27/2007

Review of Logistic Regression

\square Discriminative classifier
\square Function form for $P(Y \mid X)$

- $P(Y=1 \mid X, w)=\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}$
\square Can NOT obtain a sample of the data, because $P(X)$ is not available

Parameter Estimation

- Gradient ascent
$\square w_{0}^{t+1} \leftarrow w_{0}^{t}+\eta \sum_{j}\left[Y^{j}-\hat{P}\left(Y^{j}=1 \mid X^{j}, w^{t}\right)\right]$
$\square w_{i}^{t+1} \leftarrow w_{i}^{t}+\eta \sum_{j} X_{i}^{j}\left[Y^{j}-\hat{P}\left(Y^{j}=1 \mid X^{j}, w^{t}\right)\right]$
- Upon convergence
$\frac{\partial l(w)}{\partial w_{0}}=\sum_{j}\left[Y^{j}-P\left(Y^{j}=1 \mid X^{j}, w\right)\right]=0$
$\frac{\partial l(w)}{\partial w_{i}}=\sum_{j} X_{i}^{j}\left[Y^{j}-P\left(Y^{j}=1 \mid X^{j}, w\right)\right]=0$

Linear Separable

ㅁ What's the value of w ?

- INFINITY!
- Why?
- Maximum likelihood

$$
\begin{aligned}
& P(Y=1 \mid X, w) \\
& =\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
\end{aligned}
$$

More Training Examples

\square No change in w

- Why?

$$
\begin{aligned}
& w_{0}^{t+1} \leftarrow w_{0}^{t}+ \\
& \eta \sum_{j}\left[Y^{j}-\hat{P}\left(Y^{j}=1 \mid X^{j}, w^{t}\right)\right]
\end{aligned}
$$

$w_{i}^{t+1} \leftarrow w_{i}^{t}+$
$\eta \sum_{j} X_{i}{ }^{j}\left[Y^{j}-\hat{P}\left(Y^{j}=1 \mid X^{j}, w^{t}\right)\right]$

Non-Linear Separable

More Training Examples

Still More Training Examples

Why?

ㅁ Originally, upon convergence

- $\frac{\partial l(w)}{\partial w_{0}}=\sum_{j}\left[Y^{j}-P\left(Y^{j}=1 \mid X^{j}, w\right)\right]=0$
- With 3 more points
$-\frac{\partial l(w)}{\partial w_{0}}>0$
- To let the derivative be 0 again
- Increase $P\left(Y^{j}=1 \mid X^{j}, w\right)$

Multiple Classes

- R-1 sets of weights
- $P\left(Y=j \mid X, w_{j}\right) \propto \exp \left(w_{j 0}+\sum_{i} w_{j i} X_{i}\right), j=1, \ldots, R-1$
- $P\left(Y=R \mid X, w_{j}\right)=\frac{1}{1+\sum_{j=1}^{R-1} \exp \left(w_{j 0}+\sum_{i} w_{j i} X_{i}\right)}$
\square Classification
- Comparing $\exp \left(w_{j 0}+\sum_{i} w_{j i} X_{i}\right)$ and 1
- Comparing $w_{j 0}+\sum_{i} w_{j i} X_{i}$ and 0

4 Classes in 2d Space

LR vs. NB

- Loss functions

- LR: maximum conditional data likelihood
$\sum_{j} \ln \left(P\left(Y^{j} \mid X^{j}, w\right)\right)$
- NB: maximum data likelihood
$\sum_{j} \ln \left(P\left(X^{j}, Y^{j} \mid w\right)\right)$
ㅁ Different solutions!

LR vs. NB

\square In NB, assume class independent variance

$$
\begin{aligned}
& P(Y=1 \mid X, w)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)} \\
& \ln \frac{1-\theta}{\theta}+\sum_{i} \frac{\mu_{i 1}^{2}-\mu_{i 0}^{2}}{2 \sigma_{i}^{2}} \quad \frac{\mu_{i 0}-\mu_{i 1}}{\sigma_{i}^{2}}
\end{aligned}
$$

LR vs. NB

