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Announcements
" A
m Recitations stay on Thursdays

5-6:30pm in Wean 5409
This week: Cross Validation and Neural Nets

S~—

m Homework 2
Due next Monday, Feb. 20t
Updated version online with more hints
Start early
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OK... now we'll learn to pick those

_ _darned parameters. ..

m Selecting features (or basis functions)
Linear regression
Naive Bayes
Logistic regression
m Selecting parameter value
Rrior strength
= Naive Bayes, linear and logistic regression
Regularization strength
= Naive Bayes, linear and logistic regression
Decision trees
» MaxpChance, depth, number of leaves

Boosting
= Number of rounds

= More generally, these are called Model Selectior%

= Today: T
Describe basic idea

Introduce very important concept for tuning learning approaches: Cross-Validation
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Test set error as a function of

_ model comglexity
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Simple greedy model selection algorithm

"

m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic: |, |

Start from empty (or simple) set of
features Fy = &

Run learning algorithm for current set

of featuresiE

= Obtain h,

Select next best feature X

= .9, X that results in lowest training error
learner when learning with F, U {Xj}%

I:t+ Ay I:t U {Xi} B

(4 bard poct)
X X5 K3 X
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Greedy model selection
"
m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(X|Y)

Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

m Only a heuristic!

But, sometimes you can prove something cool about it

m e.d., [Krause & Guestrin '05]: Near-optimal in some settings that
Include Naive Bayes

m There are many more elaborate methods out there
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}

When do you stop???

m When training error is low enough?

- e 51|

[ 4

—
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

m When-training-errerislow-enough?—
m \When test set error is low enough?
Y\L\/Ll/ eNLy e NAY I,(_QV:A IS J‘QﬁL
Aevte )\ | l

L)
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Validation set
" A

m Thus far: Given a dataset, randomly split it into two parts:

Training data — {X,,..., Xnyain} Y { TA.»\ ,%] Fess)

Test data — {Xl, say XNtest}

W
m But Test data must always remain independent!
Never ever ever ever learn on test data, including for model selection

m Given a dataset, randomly split it into three parts: Lest

Training data — {X,,..., Xnyaint —
Validation data — {Xy,..., Xnyaia} I Hain /%j
Test data — {Xy,..., Xytest) - :

m Use validation data for tuning Iemlmnodel

selection
Save test data for very final evaluation

—
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

m ‘Whentraining-errorislow-enedgh?—
m \Whentestseterrer-istew-enough?—
m \When validation set error is low enough?

@Vm/%_’- f)\f) \/o\\'lﬁ(orj\"o/\ &Q"‘
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

When-training-errer-is-lew-eneugh?—

H

H

m ‘Whenvalidatioh-seterrorislow-enough?

m Man!!! OK, should | just repeat until | get tired???

| am tired now...

No, “There is a better way!”
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(LOO) Leave-one-out cross validation
" B

m Consi alidation set with 1 example: Jet noforbon:
D — training dat D\ = D\ {\i

Dp\i — training data with i th data point moved to validﬂion set
m Learn classifier h; with D\i dataset L O_V" |
_ Sy V/i!
m Estimate true error as: ‘
@f hp, classifies i th data point correctly
@f ﬁ;\] IS wrong about i th data point
Seems really bad estimator, but wait!
m LOO cross validation: Average over all data points i:

For each data point you leave out, learn a new classifier hy
Estimate error as:

m
(E’I“’I“OTLO()) = - Z 1
1=1

\-

i Aetn

yndic o
fnc,
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LOO cross validation is (almost)
unblased estimate of true error!
S

m When computing LOOCYV error, we only use m-1 data points
So it’s not estimate of true error of learning with m data points!
Usually pessimistic, though — learning with less data typically gives worse answer

m LOO is almost unbiased!
Let error,, . ., b€ true error of learner when you only get m-1 data points
In homework, you’ll prove that LOO is unbiased estimate of error

Eplerrorrpol = GTTOM

m Great news!
Use LOO error for model selection!!!

true,m-1-
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

When-training-errer-is-lew-eneugh?—

[ |
[ | ?
] o . _
8/ STOP WHEN error, o, IS L%
\
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Using LOO error for model selection

T Fit¥to ¥
cccccccc | WiewPalmomial | Resst

¢
|
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Computational cost of LOO
" A
m Suppose you have 100,000 data points
m You implemented a great version of your learning

algorithm
Learns in onl@
m Computing LOO will take abo@

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)
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Solution 2 to complexity of computing LOO:

(More txﬁicala Use k-fold cross validation

m Randomly divide training data into k equal parts D D
/D

D,,....D, ) I \

m Foreachi D' D2 /
Learn classifier hpp; using data point not in D,
Estimate error of hy, hppi ON validation set D;:

k . .
errorp; = >, 1 (hD\D,-(X‘7 ) =y ) E

(Xj 7y‘7) EDi

m k-fold cross validation error Is average over data spiits:

i D
BTTOTk_fOld == Z Z 6?"7"0?"1)2.
N

m Kk-fold cross validation prcFerties: (
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k
Usually, k=10©
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Regularization — Revisited

x 5 X* 776

H
i m Model selection 1: Greedy
Pick subset of features that have yield low LOO error

m Model selection 2: Regularization
Include all possible features!
Penalize “complicated” hypothesis

©2006 Carlos Guestrin
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
-2.2 +3.1 X - 0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

I
) <o

m Regularized least-squares (a.k.a. ridge ssion), for A>0:
2 k
w* = arg m“irnz (t(xj) — Zwihi(xj)) + AZw? Plﬂc'”ﬁ

— . Latvror

U Al Hasis  fs. ) /P,Qm\{}( for IGV'1< We
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Other regularization examples
" J

m Logistic regression regularization
Maximize data likelihood minus penalty for large parameters
N\ V. —~7 T a N\ v~ 1 2
argmax ) In P(y’|x7, w) — A} wj
] (/

Biases towards small parameter values

m Naive Bayes regularization
Prior over likelihood of features
Biases away from zero probability outcomes

m Decision tree regularization

Many possiblilities, e.g., Chi-Square test and MaxPvalue parameter

Biases towards smaller trees

e ——— e
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Lvyov

How do we pick magic parameter?
"

Uy (‘\s(

Cross Validatigrd]

0 ”u(¢4 6,&'7

154 X s (i Aets on
|

A in Linear/Logistic Regression
(analogously for # virtual examples in Naive Bayes,

MaxPvalue in Decision Trees)
©2006 Carlos Guestrin 21



Regularization and B?yesian learning
[ikelihood Ftrm — Qrio”

/n{T'IT | V
PAW | 4,

Ve

m \We already saw that regularization for logistic
regression corresponds to MAP for zero mean,
Gaussian prior forw  acdel  sclechon s o prio over

Mockels

m Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naive Bayes: Directly defined as prior over parameters

[ Pbecisiontrees: Trickier to define... but we'll get back to this
ML v VLGSR N v "“r(ov K whs-n Ky A s
D by - Meg POSPcou (DI P VI
Agree= i - owtr o e Dldege). Py
P( e ) Xe Polygrasls NEIS \V /).0(171“]

A Pr—io*‘i
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Occam’s Razor

" A
m William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of
entities required to explain anything.” owver QH_M -

m Regularization penalizes for “complex explanations”

m Alternatively (but pretty much the same), use Minimum
Description Length (MDL) Principle:
mrgi;e length(misclassifications) + length(hypothesis)

/ -f—‘nL {a\ / D(sav-?!:z Ax}b\ 53
J&/ Afrec 5
cv»«?\kﬁ( +) oF P\\@W &“‘}7}‘&"’0

m |ength(misclassifications) — e.g., #wrong training examples
m |length(hypothesis) — e.g., size of decision tree

©2006 Carlos Guestrin 23



Minimum Description Length Principle

" J
m MDL prefers small hypothesis that fit data well:

n L (DI KLY L T - (Kh)
C1\&7 | ") T LiCx\1Y)

L"\,\/ \_’\/\/
M 1se fasyReations h yp-

L,(D]h) — description length of data under code C, given h
= Only need to describe points that h doesn’t explain (classify correctly)

L,(h) — description length of hypothesis h

m Decision tree example

L, (D]h) — #bits required to describe data given h
= If all points correctly classified, L-,(D|h) =0
_/ 

L,(h) — #bits necessary to encode tree
Trade off quality of classification with tree size

vy
U L

Q)

h s
"M DL
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Bayesian interpretation\ of MDL Principle

<k lhsod i
" A S 7 e
m MAP estimate hyap = argmax[P(D | h)P(h)]

, z
rronotinic 6L argmax [log> P(D | h) + logs P(h)]
h

argrax f = ”ﬂ""’“ﬁ argmin [—logo P(D | h) — logs P(h)
h

m Information theory fact:
Smallest code for event of probability£ requires —log,p bits

m MDL interpretation of MAP:
Jlog, P(D|h) — length of D under hypothesis h bits
-log, P(h) — length of hypothesis h (there is hidden parameter here)
MAP prefers simpler hypothesis: oty for  L-hue
m minimize length(misclassifications) + length(hypothesis)

m In general, Bayesian approach usually looks for simpler
nhypothesis — Acts as a regularizer
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What you need to know about Model Selection,

Regularization and Cross Validation
" J
m Cross validation
(Mostly) Unbiased estimate of true error
LOOCV is great, but hard to compute
k-fold much more practical
| Use for selectingwter values!
m Model selection
Search for a model with low cross validation error

m Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach

m Minimum description length

Information theoretic interpretation of regularization
Relationship to MAP

©2006 Carlos Guestrin 26



Logistic regression

" J
m P(Y|X) represented by: K
P(Y=1]|z,W) =

m Learning rule — MLE:
(W)

8’(1)7;

[sgishe £

o

ﬁr‘jw‘to{A

1

0z 4
__—_—//

= Yy — g(wo + 3 wiz))]
7 7

w; — w;+nd zd
o o / J T.Gu&w

V‘CJ'L
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= g(wp + Z W;T;)
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y
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Sigmoid
"

1
1 4 e—(wot)_; wiz)

g(wo + Z WiT;) =

Wo=2, w;=1 wy=0, w;=1 wy=0, w;=0.5

1 1
0.9r b 0.9r
0.8¢ B 0.8¢
0.7¢ b 0.7¢
0.6 b 0.6
0.5¢ B 0.5¢
041 7 041
0.3r b 0.3r
0.2¢ b 0.2¢
0.1 B 0.1

06 4 2 0 2 4 6 0—6 4 2 6 2 4 6 06 4 2 0 2 4 6
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Perceptron as a graph
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Linear perceptron

classification region
"

““““
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Optimizing the perceptron
" A
m Trained to m|n|m|ze sum-squared error.

— C hain role

(W) = —Z[y —g(wo+Zw1x,)] /
B_ 0 3[“»*%«:;2%
Dw;

SN—

2 < 7- [ -gereg ot

DM /

ﬂka'(v&\)Yi ve OF
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Derivative of sigmoid
" J

oL(W
(9(11)) _Z[y _g(w0+zw'$/)]a¢ g(’UJO_I_Zw/QZ/)
3(;() D ([TC-X)*(
Saloor ) = w030 Ted) | = = (e . 2 e
w fwo £, i) ) -
D W, :((*C_x) ¢
- C-x = H'(“i'-[ _
/ (C) (1« YL

2
- I,.,%x’)q,l CS(:(A - 3 (X) [é
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The perceptron learning rule

" A ltarn rede gl
/ LC:/ A\

Pov@p*; wi — w0 wld /J o wall chesif
: J

B ) - T :
qnsrit 40 & = [y? — glwo + > wiz])]g’ (1 — g¢’)

g><~/>ﬁ4.—h lm

g = glwo+ Y wazl) g

TN

[

[oss Fun ¥ = Cond (iiihad
ké‘j\ﬂ\.é Yébh%ioh
m Compare to MLE:

mare:
An ‘\r\

G s

. : / , _ € loGy eetion

G T LT 6 = - g(wo + Y wir))
J algo W\V\—\??a ~ Hh igﬁlgg
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Percepton, linear classification, =/

__Boolean functions , “;~ =
S
oY X‘ OS W ’('ﬁob o ,-F)( VA
m Can learn x; V X, ; />>77 WA 0 ofhnr s,
1
>
o5V (1045 %)
G S 1 _U- ‘ VXAV
m Can learn x; A X, oS y e
‘} <o Ofha,
63~ - -
m Can learn any conjunction or disjunctio V
ISJU M
%I V%'L \/XS - .- i K Wo-tZ‘v'\Yi
e ) Y, 05 '
\ ~chon l
) Dyne ’ oS~ Y
2 ?
4 — /
\
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Percepton, linear classification,

__Boolean functions /j
JE— __ R

\_;
A

m Can learn majority :‘;‘;'—;ﬁ‘\*" X f“ 7 g <6 o,
=N \ )< ¢
rul ! \
AvL Pru ? 2

m Can perceptrons do everything?
cannot  Learnn  XOR

©2006 Carlos Guestrin 35



Going beyond linear classification
" B
m Solving the XOR problem

©2006 Carlos Guestrin
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Hidden layer
" A
m Perceptron: out(x) = g(wo + ) wiz;)

m 1-hidden layer:
out(x) = g (wo + Zwkg(w’é + wafffz))
k i

©2006 Carlos Guestrin

37



A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

LUUU Al ivo uucotLlinl

Example data for NN with hidden layer
" S
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Learned weights for hidden layer
"

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




NN for images
" S

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

eV VY W IV UL

40



Weights in NN for images
" S

Learned Weights

E n
'E_I
w I l

Typical input images
©2006 Carlos Guestrin
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Forward propagation for 1-hidden

. laver_brediction

m 1-hidden layer:
out(x) = g (wo + Zwkg(wl(g + wamz))
k i

©2006 Carlos Guestrin
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Gradient descent for 1-hidden layer —

Back-BroBagatlon Computing %"

(W) = — Z vl — out(x9)]?
out(x) = g (Z wig(D_wy ZIZZ/))
k! 4

oL(W) _ —[y—out(x)]aom(x)

8wk 8w k

©2006 Carlos Guestrin

Dropped w, to make derivation simpler

43



Gradient descent for 1-hidden layer —

Back-BroBagatlon Computing 2™

(W) = —Zy — out(x))]?

out(x) = ¢ (Z wk’Q(Z W ZIZZ/))
54 7!

dout(x)

o(w) _ —[y — out(x)] k

8w,§"3 8wi

©2006 Carlos Guestrin

Dropped w, to make derivation simpler
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Multilayer neural networks
" J

©2006 Carlos Guestrin
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Forward propagation — prediction
" J

m Recursive algorithm

m Start from input layer

m Output of node V, with parents U,,U,,...:

Vie = 9(2’%{?(%’)
;
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Back-propagation — learning

" A
m Just gradient descent!!!
m Recursive algorithm for computing gradient

m For each example
Perform forward propagation
Start from output layer
Compute gradient of node V, with parents U,,U,,...
Update weight wX

©2006 Carlos Guestrin
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Many possible response functions
"

m Sigmoid

m Linear

m Exponential

m Gaussian

©2006 Carlos Guestrin
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Convergence of backprop
" J
m Perceptron leads to convex optimization
Gradient descent reaches global minima

m Multilayer neural nets not convex
Gradient descent gets stuck in local minima
Hard to set learning rate
Selecting number of hidden units and layers = fuzzy process
NNs falling in disfavor in last few years
We'll see later in semester, kernel trick is a good alternative

Nonetheless, neural nets are one of the most used ML
approaches

©2006 Carlos Guestrin 49



Training set error
" A
m Neural nets represent
complex functions

Output becomes more complex
with gradient steps

m Training set error

©2006 Carlos Guestrin
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What about test set error?
" A

©2006 Carlos Guestrin
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Overfitting
"
m Output fits training data “too well”
Poor test set accuracy

m Overfitting the training data
Related to bias-variance tradeoff
One of central problems of ML

m Avoiding overfitting?
More training data
Regularization
Early stopping

©2006 Carlos Guestrin
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What you need to know
" S
m Perceptron:
Representation

Perceptron learning rule
Derivation

m Multilayer neural nets
Representation
Derivation of backprop
Learning rule

m Overfitting
Definition
Training set versus test set
Learning curve

©2006 Carlos Guestrin
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