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Semi-supervised learning and
_ discriminative models
S

m \We have seen semin-iupe[vised learning for
generative models v ‘A

EM M (03 P(X> =  n~X LD SP()(/U)
J

m What can we do for discriminative models
Not regular EM PYIX) = Cant compms p(X)

= we can’t compute P(X)
m But there are discriminative versions of EM

Co-Training!
Many other tricks... let’'s see an example
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Linear classifiers — Which line Is better?

Example I:
<a;(1) ..... ngm)> — m features

y; € {—1,4+1} — class




Support vector machines (SVMs)

minimizew WwW.wW
(w.xj +b) y; > 1, Vj

m Solve efficiently by quadratic
programming (QP)

1 Well-studied solution algorithms

m Hyperplane defined by
support vectors




What if we have unlabeled data?

(m)

\\,}.\’)\ <$?(%l) 7777 In )7ynL>
U-V‘“ r_r
. Example i:
. ™ <5L‘§1),---,$§m)> — m features
| / y; € {—1,41} — class
¢

ny Unlabeled Data:
(o0, £



Transductive support vector

machlnes ‘TSVI\/IS) [ Cror

minimizew w.w
U\w%/ é(ﬁ'/ ‘3r\u2§

<W°Xj ‘|‘b) y; > 1, Vjel

(w.xm#ﬂ%m 21 Yueu
Goe Jel ~1f YaeU



Transductive support vector

_ machines ‘TSVI\/IS)

minimize W. W

W {glr"?gn(]}
(w X —I—b) yi>1, ¥j=1,..,n

2’ (WXU —I_ b) :l/j\u Z 1, \V/’U, p— 1’ “.’n
’lﬁlkimar (@nsTeind

Yu € {_17+1}7 Vu = y ey U




What's the difference between transductive

_Iearninﬂ and semi-supervised learning?

m Not much, and
A lot!!!

mf Semi-supervised learning:
labeled and unlabeled data — learnw 5 /
use w on test data Sﬁl

m Transductive learning
same algorithms for labeled and unlabeled data, but...
unlabeled data is test data!!!

m You are learning on the test data!!! }c,n F ook af omzﬁch'm
OK, because you never ook at thg !ééelé of the test data SCmed] [
can get better classification

but be very very very very very very very very careful!!!
m never use test data prediction accuracy to tune parameters, select kernels, etc.
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Adding slack variables
" A

minimizew’{glww%(]} W. W + C§§) ¢ ?Z-{i\

> 1——7) Vj = 17

...’nL

(2ar n Or\ltj oA lc\[X[eA oQCA\
(\6)f\0 rg C/\’\\C\L)(IZIL y(a;—}z\)




Transductive SVMs — now with slack
VariabIeS' [Vapnik 98]

Optimizew, {1, .. Eny s i?/} c
"\/*5\*\ \o\‘y-lcfk S[c.ck_s Cless =% \Ah |e e

&1 &y}
A

A la bell slcky

—~ —~

minimize w.w+C3 ;& +C3, &
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Learning Transductive SVMs is hard!

w - . . C ~ pu 3  —~ ~ 3 C ~ = 3
Upt”’nlzew,iél,...,énlj},i Ty eees n]f’i Ty eees n]}
minimize ww+CS.&+CS &,

i L4957 Ly SU
N . .
(WX;)—I_D/)yJ'ZJ-_ 7 vi=1,...,np,
(WX, -3, >1—-—&, YVu=1 Mo
\ u 1T YY) 5u Z SUs g eeey Ty

m Integer Program
NP-hard!!!

Well-studied solution algorithms,
but will not scale up to very large

problems (o) oo ddvpcsm\s i




A (heuristic) learning algorithm for
Transductive SVMS [Joachims 99]
T

minimize w.w 4 CY> &+ CYy &y

(W.Xj -|— b) Y, Z 1 — fj, V] — 1,...,nL
(Wxy +0) gy >1—E&,, Yu=1,... . ny
yu € {—1,41}, YVu=1,...,ny

ver Cweri )‘_‘\-\amﬁoh .
W5 4 i+ “m If you set C to zero — ignore unlabeled data

) . .
+ ot m Intuition of algorithm:

start with small C

add labels to some unlabeled data based on
classifier prediction 1§ ¢lessidicr VAry o aloou

suel slowly increase C X g lebel 4%
keep on labeling unlabeled data and re-running
classifier 12



Some results classifying news
articles — from [Joachims 99]
JEEm

} o f — belek
QS“ &0 .\6.,0(- Ln lc-.
R
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v
Figure 6: Average ?P/R breakeven point on the
Reuters dataset for different training set sizes and a

test set size of 3,299. A |ebeld
—_—_—
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What you need to know about
transductive SVMs
" BN

m What Is transductive v. semi-supervised learning

m Formulation for transductive SVM
can also be used for semi-supervised learning

m Optimization is hard!
Integer program

m There are simple heuristic solution methods that
work well here

14



Recommended reading:
Bishop, Chapters 3.6, 8.6

Shlens PCA tutorial
Wall et al. 2003 (PCA applied to gene expression data)

Dimensionality

reduction

Machine Learning — 10701/15781
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April 24t 2006 .



Dimensionality reduction
" A
m |Input data may have thousands or millions of
dimensions! / ebowrd  [ess — [Goveo

g,'n«DLL twords

eg.,textdatahas 7, . o . > [0000es"

m Dimensionality reduction: represent datz tvith
fewer dimensions
easier learning — fewer parameters
visualization — hard to visualize more than 3D or 4D

discover “intrinsic dimensionality” of data
= high dimensional data that is truly lower dimensional

(P

16



Feature selection
" A
m Want to learn f:XisY  #-
X=<X e, X >
but some features are more important than others

& (6-S$£ {TC&%U’\

m Approach: select subset of features to be used
by learning algorithm

Score each feature (or sets of features)

Select set of features with best score

-

17



Simple greedy forward feature selection
algorithm

2
= Pick a dictionary of features . 11, 3, X7,

e.g., polynomials for linear regression
m Greedy heuristic: ) %3

Start from empty (or simple) set of
features Fy = &

Run learning algorithm for current set

of features F,  / _Posiy

. Obtainh, & ) 4‘%_“; ijL‘“

Select next best feature X IR
_ m(/‘-(-\,&\ tho,

m eg., X that results in lowest cross- N
validation error learner when learning with — \{ =ggcneved
F, U {X) AA (A 7< T t

ks _
F.p — F U {X} bew) fratwt
Recurse

18



Simple greedy backward feature

selection algorithm

m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic:
Start from all features F, = F
——

Run learning algorithm for current set
of features F,

= Obtain h,

Select next worst feature X

me.g., X that results in lowest cross-
validation error learner when learning with

P AXE oot
Ft+l ¢ Ft - {XI} J VLot ‘\/}‘.

Recurse

19



Impact of feature selection on

CIaSS|f|Cat|On Of ﬂ\/l RI data [Pereira et al. '05]
"
Accuracy classifying
category of word read

by subject
Hyvoxels mean | subjects

2338 3298 3323 4248 4743 44963 778 868
50 3\' ().735 0.783 0.817 (.55 0.783 0.75 0.8 0.65 0.75

[ w0 g om2| 0767 0s 0533 0817 085 0783 0.6 0.783

Y 200 S| 0737 | 0783 0783 0517 0817 0.883 075 0583 0.783

% 3009 | 075 | 0.8  0.817 0.567 0.833 0.883 0.75 0.583 0.767
B 100 0.742 | 0.8 0783 0583 085 0.833 075 058  0.75
800 0.735 | 0.833  0.817 0567 0.833 0.833 07 055 0.75

1600 0.608 | 08 0817 045 0.783 0.833 0633 05  0.75

all (~2500)  0.638 0.767 0.767 0.25 0.75 (0.833 0567 0433  0.733
Table 1: Average accuracy across all pairs of categories, restricting the procedure to

use a certain number of voxels for each subject. The highlighted line corresponds to the
best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task

20



Lower dimensional projections
"
= Rather than picking a subset of the features, we

L AL

can’new features that are combinations of -
existing features Vs = [o XY 4 17 x], 28 x

%niw = 3 ()()

m Let's see this in the unsupervised setting

just X, butno Y
-~ '(CX\“'}“ /X()V\"/— L\G\\/L

21



Liner projection and reconstruction

reconstruction:
only know z,, cmeX U=
what was (X{,X

22



Principal component analysis —
_ basic idea
S

m Project n-dimensional data into k-dimensional
space while preserving information:
e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

o

m Choose projection with minimum reconstruction
error

/

23



Linear projections, a review

" J
m Project a point into a (lower dimensional) space:
point: X = (Xq,...,X;)
select a basis — set of basis vectors — (ul, Uy)

= we consider arthonormal basis: ;- ’{2; s b
u-u=1, and u;-u;=0 for i#] %

select a center_——i, defines offset of space

best coordinates in lower dimensional space defined

by dot-products: (z,,...,2,), z. = (X-X)-u, b=, L
y dot-p (23,120, 2= (XX)u, Fat
= Minimum squared error

wa Y
e ) ’* :
ol ™ c
@L/--;’k % "
Z Q\/-/‘ ;Z 7(4-\\ i % \



PCA finds projection that minimizes

reconstruction error /»« Ai e siins
J

= Given m data points: x' = (X,',...,X,), i=1...m
m Will represent each point as a projection:

k

%' =% ZZZ:U- where: x = 1 %n‘vi and ! — ¢

= Tmgt T P TY

— =
: 4—0raAblf~c‘7(

prejtdt A\ then T % -
2 porteont v\?ﬂyc’\w\ o s coa r Kincde
m PCA:

Given gn, find (uy,....u) A
minimizing reconstruction error:

m
error, = » (x'— %')?

1=1 ? \ bgv}’ | X1

25




Understanding the rec:onstru\ctlon

Ay W
error Oﬁ\:% e | X—X+Z uj oz =x' -,

Given k<n, flnd (Uqg,...,uy)

H Note that Xi Can be represented minimizing reconstruction error:
exactly by n-dim S|onal projection: errory, = f: (x! — %)2
=X NG\(: u’ = o o2
e 45 ) = e thttal b
zfaaﬂg %\, 52
= Rewriting error: etk = £ T, . 2
B Al NN _ v - ™ n \ b\"&
- . { _ . :
Z\ w?_(?;)% “(><+Z£;>U\§ -Z (Z €3 W
' = &:\ (e




Reconstruction error and o e
- . (G\'BYLT (A 15N l«’n
covariance matrix -ob b

m n j
error, = Z z [uj . (Xi _ }—()]?
i=1 j=k+1 o Y
~ n T C - 1
.S T yx) (v~
~ 2::( ?(&4\[;\/\} ()L 3 '
n m Y - (- T
T Wy ) ()
- ‘)"Lk‘ ;:\—- ~ _ N
—ﬁ’ U&% Z ()("‘5(3 (X“X)l b&\\
al b
) m . § Z""{""V‘» m&tﬂ(y‘l,(
of Aot




Minimizing reconstruction error and

eigen vectors

m Minimizing reconstruction error equivalent to picking
orthonormal basis (u,,...,u,) minimizing:
n

— T .
errory = Z u; 2 u; ' o redh t/‘l-c'lwv-s Cn € b
_ i=kt1l o cenSidtr 1]
m Eigen vector T = N T S N
W E(/\ = \ =) W =
on
L(‘\‘ch} y_\ﬁ) ‘M

m Minimizing reconstruction error equivalent to picking

(Ug,q:---,U,) tO be eigen vectors with smallest eigen values
by €igen \Mc‘mrf velws  oF T MININIBE Lrvery
n
\ A X i TR T
Jort v} ) - UN\\,\A %= ket ) T(«‘
)"l>/ >\|‘§'| X = A % >\'\§
! ‘ A s ) \-\-\f\ (.ow



Basic PCA algoritm
"

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

X, X=X
m Compute covariance matrix:
<+ XX,
m Find eigen vectors and values of X

m Principal components: k eigen vectors with
highest eigen values

29



PCA example

. k .
St — 3 N\ LY
X' =X+ > ziuy
J )
=1

=10l x| =10l x|
Fie Edit ‘“iew Insert Tools Deskiop window Heb L Fie Edi Wiew Insert Took Deskbop  Window  Help
L&k QaAM®|e 0B 80 dell rame|E 0@ a3

9r ar

g o a Lo}
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: . sl Mmean o .
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2 o© o eigenvector
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PCA example — reconstruction
" J

sl = N i only used first principal component
X' =X+ > Y
J=1

[ Fogurzl =ESIR-)rgurer =10 =]
Fie Edi ‘iew Insert Took Desktop  Window  Help ~ File Edt ‘Yiew Insert Tools Deskop wWindos Help £
NeEEHa|: aa&ma (e 0B a0 NeEa|k«ade (& 0B o

9 9

&l @ BH ©

7 o 7t o

mean
1} < . 6t 2
\ F_|rst

5 < eigenvector 5| <

N S it G, o o

3 o al <>D

Second

a4 ° eigenvector 2l o

1k 1L

D 1

0 i 2 3 4 £ & T a a EID ] 3 3 "1 5 B 7 3 3




Eigenfaces [Turk, Pentland '91]

m |Input images:

m Principal components:

32



Eigenfaces reconstruction
"

m Each image corresponds to adding 8 principal

components:

33



Relationship to Gaussians
" i

m PCA assumes data is Gaussian
X ~NQGZ)
m Equivalent to weighted sum of simple
Gaussians: . o
X:)_(—|—szuj; ZjNN(O;U]% o
j=1

m Selecting top k principal components
equivalent to lower dimensional Gaussian

approximation:

k
X%)_(—|—szu]‘—|-€; ZJNN(Oro']Q)
=1

e~N(0;52), where o2 is defined by error,

34



Scaling up
" A
m Covariance matrix can be really big!
isnbyn
10000 features — ||
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd

35



SVD
" S

m Write X=USVT
X + data matrix, one row per datapoint
U < weight matrix, one row per datapoint — coordinate of x' in eigenspace
S + singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue 2,
VT + singular vector matrix
= in our setting each row is eigenvector v;

36



PCA using SVD algoritm
"

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

Xs + X=X
m Call SVD algorithm on X, — ask for k singular vectors

m Principal components: k singular vectors with highest
singular values (rows of VT)
Coefficients become:

37



Using PCA for dimensionality
reduction In classification
" SN

m \Want to learn f:X—=Y

but some features are more important than others

m Approach: Use PCA on X to select a few
Important features

38



PCA for classification can lead to

. gRroplems.

m Direction of maximum variation may be unrelated to
“discriminative” directions:

m PCA often works very well, but sometimes must use
more advanced methods
e.g., Fisher linear discriminant

39



What you need to know
" A
m Dimensionality reduction
why and when it's important

m Simple feature selection

m Principal component analysis
minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD
problems with PCA

40
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