Two SVM tutorials linked in class website

(please, read both):

» High-level presentation with applications (Hearst 1998)
» Detailed tutorial (Burges 1998)

SVMs, Duality and

the Kernel Trick
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Announcements
" A
m Third homework

IS out 5%,4, (c,,vb ),
v

Due March 1st

m Final assigned by registrar:

May 12, 1-4p.m @;AWJ
Location TBD

m Midterm
March 8", a week from Wednesday
Open book, notes, papers, etc. No computers
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SVMSs reminder
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Today'’s lecture
" J
m Learn one of the most interesting and exciting
recent advancements in machine learning

The “kernel trick”
High dimensional feature spaces at no extra cost!

m But first, a detour
Constrained optimization!
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Constrained optimization
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Lagrange multipliers — Dual variables
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Lagrange multipliers — Dual variables
" S

Solving: MiNg Maxy o2 — a(x —b)

s.t. >0
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Dual SVM derivation (1) —

_the Iinearl¥ separable case
P \ C%Q,
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Dual SVM derivation (2) — +f7:

_the Iinearl¥ separable case/

L(w.a) = fw.w — S o | (w.x
\ ? / 2 LJ] j J |
a; > 0, V7 - hen (W_x$4§,).(‘1)->\
- =) Xz 0 N
(\/\J Xy {‘53 (9‘7 P/ \ \ f

Mminimizew %W.W

(w.xj + b) yi > 1, Vj

b=y — W.Xp

for any k£ where o > 0
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Dual SVM Interpretation
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Dual SVM formulation —

. ghelinearly separable case

1l —
minimizeg Lz ay — 5 Li,j QY Y5 XX 4

b=y — W.Xp

for any k where oy > 0
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Dual SVM derivation —

. Lhenon.separable case
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Dual SVM formulation —

. Lhenon.separable case

. 1
MIRIMIzZen >o; 0 — 5 D04 j 0G0GYY XX

: \{"(h(» ~'-/°(N)]
fareni '
a; > 0
/@ b= W:ZaiinZ‘
ol Cant br foo lavoe i

b=y — W.Xp
for-any k where C > a; > 0
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Why did we learn about the dual
SVM?

m There are some quadratic programming
algorithms that can solve the dual faster than the
primal

m But, more importantly, the “kernel trick”!!!

Another little detour... o
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Reminder from last time: What If the
data IS not linearly separable?
" S

Use features of features
of features of features....
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Higher order polynomials
g p y P /((jw( d"L/?dLj
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number of input dimensions d=6,m=100-

about 1.6 billion terms
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Dual formulation only depends on

] dot-groducts, not on w! O“‘ﬁb
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K(Xi:Xj,) = P(x;) - P(x;)
LJZ Y, — =0

C>a; >0
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Dot-product of polynomials
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41_“ p<ivy

: : VS .
Finally: the “kernel trick”! ;,fctji%*:f;jj,ﬂ

WATR Y Hreff,

" S '

minimizeq ) ; a; — %Zi,j oo yiy K (X4, X5)
K(x;,x;) = P(x;) - P(x5)

> i oy; = 0
C>a; >0 w= > oy P(x;)
i

i 50y P"\‘j degree exactly A b=y — wW.P(x)

AQL-\\ Corn VMA.L X5 DCb for-any k£ where €' > ap > 0
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. . ) \\'r s p<ivy
Finally: the “kernel trick”! f‘,id‘fg‘:m;i‘f,ﬂ

_ — itV e e
minimizeq Y; 04 — 5 3 7 04y,
K(x;,x;) = P(x;) - P(x5)

> i oy; = 0
C>a; >0 w= > oy P(x;)
i

m Never represent features explicitly
Compute dot products in closed form

m Constant-time high-dimensional dot-

b=y — W.P(x)

products for many classes of features for any k where €' > aj > 0

m Very interesting theory — Reproducing
Kernel Hilbert Spaces

Not covered in detail in 10701/15781,
more in 10702
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Polynomial kernels
"
m All monomials of degree d in O(d) operations:
d - AT
d(u) - P(v) = (u-v)® = polynomials of degree d

m How about all monomials of d§gree up to d?
Solution 0:  ((w)- P (V) =

Better solution: (W-V 1) = (W) + W vy vt

A
d)(u \D 2 UL\/—H\ ()(A}

—&.M\L
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Common kernels
" A
vl
m Polynomials of degreeﬂd 3
K(u,v) = (u-v)“
NV
'\'\‘("'A‘."j
m Polynomials of degree up to d

K, v)=(u-v+ 1)°

coondh 10T

_ Cor rSP \
m Gaussian kernels u — v]] V' hmnsers
K(u, V) — e&Xp < 5 ) —Flc\"w-c &Pﬂ\da_.

f*""“@) (). 1ok

o2

O Sigmoid
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Overfitting?
"
m Huge feature space with kernels, what about
overfitting???

Maximizing margin leads to sparse set of support

vectors
cClol

Some interesting theory says that SVMs search for
simple hypothesis with large margin

Often robust to overfitting — &
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What about at classification time
" A

m For a new input X, If we need to represent ®(x),
we are in trouble! i hevek wrdc Wb deo Bt

m Recall classifier: sign(w.®(x)+b)
m Using kernels we are cool!

w =Y o P(x;)
i

\ x
) V
o 06 = T iy DO | b=y — w.d(x)

for-any k where C > a; > 0

£a5Y to
COW"?V&L
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SVMs with kernels
" A
m Choose a set of features and Ifernel function
m Solve dual problem to obtain support vectors a;

—_— I

m At classification time, compute:
£ ol dater

————

‘V

w-P(x) =) oy K(x,x;)
;

————

b=y — ) iyl (xp, X;) sign (w - @) +0)

—

(
for any k where C > ap. > 0
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What's the difference between
SVMs and Logistic Regression?
" B

SVMs Logistic
Regression

Loss function

High dimensional
features with
kernels

©2006 Carlos Guestrin 26




Kernels in logistic regression
" J
1

P =1]z,w) = - T o—(W-(x)Fb)

m Define weights in terms of support vectors:
w = > a;d(x;)
0

1

1 4 e~ (i P ()@ (x)+b)
1

1+ e_(zi o; K (x,%;)+b)

PY=1|zw) =

m Derive simple gradient descent rule on ao,
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What's the difference between SVMs

i and Logistic Reﬁression? (Revisited)

features with
kernels

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
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What you need to know
" A
m Dual SVM formulation
How it's derived
m The kernel trick
m Derive polynomial kernel
m Common kernels
m Kernelized logistic regression
m Differences between SVMs and logistic regression
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Acknowledgment
"

m SVM applet:
1 http://www.site.uottawa.ca/~gcaron/applets.htm
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