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Announcements

� Project:
� Poster session: Friday May 5th 2-5pm, NSH Atrium 

� please arrive a little early to set up

� FCEs!!!!
� Please, please, please, please, please, please give 

us your feedback, it helps us improve the class! ☺
� http://www.cmu.edu/fce

http://www.cmu.edu/fce
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Discount Factors

People in economics and probabilistic decision-making do 
this all the time.
The “Discounted sum of future rewards” using discount 
factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
:       (infinite sum)
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The Academic Life

Define:
VA = Expected discounted future rewards starting in state A
VB = Expected discounted future rewards starting in state B
VT =       “ “ “ “ “ “ “ T
VS =       “ “ “ “ “ “ “ S
VD =       “ “ “ “ “ “ “ D

How do we compute VA, VB, VT, VS, VD ?
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Computing the Future Rewards of 
an Academic

Assume Discount 
Factor γ = 0.9
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Joint Decision Space

� State space: 
� Joint state x of entire system

� Action space: 
� Joint action a= {a1,…, an} for all agents

� Reward function: 
� Total reward R(x,a)

� sometimes reward can depend on action

� Transition model: 
� Dynamics of the entire system P(x’|x,a) 

Markov Decision Process (MDP) Representation:
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Policy

Policy: π(x) = a
At state x, 

action a for all 
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2
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Value of Policy
Expected long-
term reward 

starting from x
Value: Vπ(x)

Start 
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 
γ3 R(x3) + γ4 R(x4) + L]

Future rewards 
discounted by γ ∈ [0,1)x1
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Computing the value of a policy
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Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 
γ3 R(x3) + γ4 R(x4) + L]

� Discounted value of a state:
� value of starting from x0 and continuing with policy π from then on

� A recursion!
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Computing the value of a policy 1 –
the matrix inversion approach

� Solve by simple matrix inversion:
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Computing the value of a policy 2 –
iteratively

� If you have 1000,000 states, inverting a 1000,000x1000,000 
matrix is hard!

� Can solve using a simple convergent iterative approach: 
(a.k.a. dynamic programming)
� Start with some guess V0

� Iteratively say:
� Vt+1 = R + γ Pπ Vt

� Stop when ||Vt+1-Vt||∞ · ε
� means that ||Vπ-Vt+1||∞ · ε/(1-γ)
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But we want to learn a Policy
Policy: π(x) = a

At state x, action 
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2

� So far, told you how good a 
policy is…

� But how can we choose the 
best policy???

� Suppose there was only one 
time step:
� world is about to end!!!
� select action that maximizes 

reward!
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Another recursion!

� Two time steps: address tradeoff 
� good reward now 
� better reward in the future
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Unrolling the recursion

� Choose actions that lead to best value in the long run
� Optimal value policy achieves optimal value V*
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Bellman equation

� Evaluating policy π:

� Computing the optimal value V* - Bellman equation 

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ
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Optimal Long-term Plan

Optimal value 
function V*(x)

Optimal Policy: π*(x)

Optimal policy:
)a,x(maxarg)x(

a

∗∗ = Qπ

∑ ∗∗ +=
'

)'(),|'(),(),(
x

xaxxaxax VPRQ γ
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Interesting fact – Unique value

� Slightly surprising fact: There is only one V* that solves 
Bellman equation!
� there may be many optimal policies that achieve V*

� Surprising fact: optimal policies are good everywhere!!!

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ
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Solving an MDP
Solve 

Bellman 
equation

Optimal 
value V*(x)

Optimal 
policy π*(x)

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

� Policy iteration [Howard ‘60, Bellman ‘57]

� Value iteration [Bellman ‘57]

� Linear programming [Manne ‘60]

� …
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Value iteration (a.k.a. dynamic programming) –
the simplest of all

� Start with some guess V0

� Iteratively say:
�

� Stop when ||Vt+1-Vt||∞ · ε
� means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

∑+=+
'

1 )'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ
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A simple example

You run a 
startup 
company.

In every 
state you 
must 
choose 
between 
Saving 
money or 
Advertising.

γ = 0.9
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Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1
2
3
4
5
6

γ = 0.9
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Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1 0 0 10 10
2 0 4.5 14.5 19
3 2.03 6.53 25.08 18.55
4 3.852 12.20 29.63 19.26
5 7.22 15.07 32.00 20.40
6 10.03 17.65 33.58 22.43
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Policy iteration – Another approach for 
computing π*

� Start with some guess for a policy π0

� Iteratively say:
� evaluate policy: 

� improve policy:

� Stop when 
� policy stops changing

� usually happens in about 10 iterations
� or ||Vt+1-Vt||∞ · ε

� means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑+=+
'

1 )'(),|'(),(max)(
xa

xaxxaxx tt VPR γπ

∑ =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx tttt VPRV πγπ
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Policy Iteration & Value Iteration: 
Which is best ???
It depends.

Lots of actions?  Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic?   Value Iteration

Best of Both Worlds:
Modified Policy Iteration   [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
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LP Solution to MDP
Value computed by linear programming:

� One variable V (x)  for each state
� One constraint for each state x and action a
� Polynomial time solution

[Manne ‘60]

:subject to

:minimize

⎩
⎨
⎧ ≥

∑

,∀ ax

x

)(xV

)(xV )(xV

,∀ ax
)(xV ∑+

'

)'(),|'(),(
x

xaxxax VPR γ
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What you need to know

� What’s a Markov decision process
� state, actions, transitions, rewards
� a policy
� value function for a policy

� computing Vπ

� Optimal value function and optimal policy
� Bellman equation

� Solving Bellman equation
� with value iteration, policy iteration and linear 

programming
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The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3.  You have possible 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

Your immediate reward is -7.  You have possible 2 actions.

Robot: I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3.  You have possible 3 actions.      
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Formalizing the (online) 
reinforcement learning problem

� Given a set of states X and actions A
� in some versions of the problem size of X and A unknown

� Interact with world at each time step t:
� world gives state xt and reward rt

� you give next action at

� Goal: (quickly) learn policy that (approximately) 
maximizes long-term expected discounted reward
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The “Credit Assignment” Problem

Yippee!  I got to a state with a big reward!  But which of my 
actions along the way actually helped me get there??
This is the Credit Assignment problem.

I’m in state 43, reward = 0, action = 2
“ “ “ 39,   “ = 0, “ = 4
“ “ “ 22, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 13, “ = 0, “ = 2
“ “ “ 54, “ = 0, “ = 2
“ “ “ 26, “ = 100,
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Exploration-Exploitation tradeoff

� You have visited part of the state 
space and found a reward of 100
� is this the best I can hope for???

� Exploitation: should I stick with 
what I know and find a good 
policy w.r.t. this knowledge?
� at the risk of missing out on some 

large reward somewhere
� Exploration: should I look for a 

region with more reward?
� at the risk of wasting my time or 

collecting a lot of negative reward
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Two main reinforcement learning 
approaches 

� Model-based approaches:
� explore environment → learn model (P(x’|x,a) and R(x,a)) 

(almost) everywhere
� use model to plan policy, MDP-style
� approach leads to strongest theoretical results 
� works quite well in practice when state space is manageable 

� Model-free approach:
� don’t learn a model → learn value function or policy directly
� leads to weaker theoretical results
� often works well when state space is large
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Brafman & Tennenholtz 2002
(see class website)

Rmax – A model-
based approach
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Given a dataset – learn model 
Given data, learn (MDP) Representation:

� Dataset:

� Learn reward function: 
� R(x,a)

� Learn transition model: 
� P(x’|x,a) 
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Some challenges in model-based RL 1:
Planning with insufficient information 
� Model-based approach:

� estimate R(x,a) & P(x’|x,a) 
� obtain policy by value or policy iteration, or linear programming
� No credit assignment problem → learning model, planning algorithm takes 

care of “assigning” credit

� What do you plug in when you don’t have enough information 
about a state? 
� don’t reward at a particular state

� plug in smallest reward (Rmin)?
� plug in largest reward (Rmax)?

� don’t know a particular transition probability?
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Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff
� A state may be very hard to reach

� waste a lot of time trying to learn rewards and 
transitions for this state

� after a much effort, state may be useless

� A strong advantage of a model-based approach:
� you know which states estimate for rewards and 

transitions are bad
� can (try) to plan to reach these states
� have a good estimate of how long it takes to get there
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A surprisingly simple approach for model 
based RL – The Rmax algorithm [Brafman & Tennenholtz]

� Optimism in the face of uncertainty!!!!
� heuristic shown to be useful long before theory was done 

(e.g., Kaelbling ’90) 
� If you don’t know reward for a particular state-action 

pair, set it to Rmax!!!

� If you don’t know the transition probabilities 
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
� R(x0,a) = Rmax

� P(x0|x0,a) = 1
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Understanding Rmax

� With Rmax you either:
� explore – visit a state-action 

pair you don’t know much 
about
� because it seems to have lots of 

potential

� exploit – spend all your time 
on known states
� even if unknown states were 

amazingly good, it’s not worth it

� Note: you never know if you 
are exploring or exploiting!!!
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Implicit Exploration-Exploitation Lemma

� Lemma: every T time steps, either:
� Exploits: achieves near-optimal reward for these T-steps, or
� Explores: with high probability, the agent visits an unknown 

state-action pair
� learns a little about an unknown state

� T is related to mixing time of Markov chain defined by MDP
� time it takes to (approximately) forget where you started
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The Rmax algorithm

� Initialization: 
� Add state x0 to MDP
� R(x,a) = Rmax, ∀x,a
� P(x0|x,a) = 1, ∀x,a
� all states (except for x0) are unknown

� Repeat
� obtain policy for current MDP and Execute policy

� for any visited state-action pair, set reward function to appropriate value

� if visited some state-action pair x,a enough times to estimate P(x’|x,a) 
� update transition probs. P(x’|x,a) for x,a using MLE
� recompute policy
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Visit enough times to estimate P(x’|x,a)?

� How many times are enough?
� use Chernoff Bound!

� Chernoff Bound:
� X1,…,Xn are i.i.d. Bernoulli trials with prob. θ
� P(|1/n ∑i Xi - θ| > ε) · exp{-2nε2}
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Putting it all together

� Theorem: With prob. at least 1-δ, Rmax will reach a 
ε-optimal policy in time polynomial in: num. states, 
num. actions, T, 1/ε, 1/δ
� Every T steps: 

� achieve near optimal reward (great!), or
� visit an unknown state-action pair → num. states and actions is 

finite, so can’t take too long before all states are known
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Problems with model-based approach

� If state space is large
� transition matrix is very large!
� requires many visits to declare a state as know

� Hard to do “approximate” learning with large 
state spaces
� some options exist, though
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TD-Learning and 
Q-learning – Model-
free approaches
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Value of Policy
Expected long-
term reward 

starting from x
Value: Vπ(x)

Start 
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 
γ3 R(x3) + γ4 R(x4) + L]

Future rewards 
discounted by γ ∈ [0,1)x1

R(x1)

x1’’

x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)
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A simple monte-carlo policy evaluation

� Estimate V(x), start several trajectories from x →
V(x) is average reward from these trajectories
� Hoeffding’s inequality tells you how many you need
� discounted reward → don’t have to run each 

trajectory forever to get reward estimate
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Problems with monte-carlo approach

� Resets: assumes you can restart process from 
same state many times

� Wasteful: same trajectory can be used to 
estimate many states
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Reusing trajectories

� Value determination:

� Expressed as an expectation over next states:

� Initialize value function (zeros, at random,…)
� Idea 1: Observe a transition: xt →xt+1,rt+1, approximate expec. with single sample:

� unbiased!!
� but a very bad estimate!!!
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Simple fix: Temporal Difference 
(TD) Learning

� Idea 2: Observe a transition: xt →xt+1,rt+1, approximate expec. by mixture of 
new sample with old estimate:

� α>0 is learning rate
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TD converges (can take a long time!!!)

� Theorem: TD converges in the limit (with prob. 1), if:
� every state is visited infinitely often
� Learning rate decays just so:

� ∑i=1
∞ αi = ∞

� ∑i=1
∞ αi

2 < ∞
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