Reading:
Kaelbling et al. 1996 (see class website)

Markov Decision

Processes (MDPs)

Machine Learning — 10701/15781

Carlos Guestrin
Carnegie Mellon University

May 15, 2006 1

Announcements
" A
m Project:

Poster session: Friday May 5™ 2-5pm, NSH Atrium
m please arrive a little early to set up

m FCEs!!!

Please, please, please, please, please, please give
us your feedback, it helps us improve the class! ©
s http://www.cmu.edu/fce

http://www.cmu.edu/fce

Discount Factors

People in economics and probabilistic decision-making do

this all the time.

The “Discounted sum of future rewards” using discount

factor vy’ is
(reward now) +

¥ E(o, l>

v (reward in 1 time step) +
vy 2 (reward in 2 time steps) +
y 3 (reward in 3 time steps) +

(infinite sum)

7%,— KXM‘PL(,;
20 + 676m&<£,/c
§20 .
' S(Vhs
Y? 10«
Y’ 20
- Z O =:lo - /00

The Academic Life sk enios

Mev kov C }"J\I’I T

T.
Tenured
Prof
400

Street
Define:
V, = Expected discounted future rewards starting in state A

e

Vg = Expected discounted future rewards starting in state B

VT — 1 13 13 1 13 13 1 T
VS o 11 1 (13 11 1 (13 13 S
Vo= - ‘ “ “ “« o« o« D

How do we compute V,, Vg, V4, Vg, Vp ?

B 0.9_,_,.,—“’

Computing the Future Rewards of

an Academic
JE

[
Assistant
Prof
20

enljre
Prof
400

Assume Discount
Factory = 0.9

Vy= 60 ¢ 5[0-6 o1 0TI

Vg ros ¥ [0-FVs +0° ;91
0

-

Vp = foo + ¥ [03 Vo 403 4]
i Lv&lf 7

\ %U‘V &(6"0\

S ‘occq,

Joint Decision Space
"
Markov Decision Process (MDP) Representation:
m State space:

Joint state x of entire system

P

m Action space.:

Joint actionj}i{al,..., a,} for all agents

m Reward function: /

Total reward R(x,a)

——

—

m sometimes reward can depend on action X""(1
—Joco

m Transition model:

Dynamics of the entire system P(x’|x,a)

At state X,
action a for all

agents

“()il) = one peasant builds
barrack, other gets gold

= peasants get gold,
footmen attack

Value of Pollcy

Expected long-

term reward
starting from_x

Future rewards
discounted by y e [0, 1)

Computing the value of a policy

m Discounted value of a state: a— Wf\knﬁf,,’“%wi"f Hoa

value of starting from x, and continuing with policy = from then on
Vr(z0) = Ex[R(z0) +yR(z1) +~°R(z2) + v’ R(x3) + -]

——

—

A reCUI’SiO&' T Eﬁ[t;) V)] Iimc«;(:}df' fi(gefhing
. U FLA+B\: ECler
/AR Enﬁ,,(zé) v By L6 # VPR 0) €8 peye - J+ecs]
ke) =
Erl 200 +% L)+ ¥ R0G)+- -
il Fle) { By k) y o)
2.4, Ao Prev

o 2 Y Er[V)) Ve 60

' . RUD KY T P e, TN) Vi (D

K\

T, asClk, frond, fd

Computing the value of a policy 1 —

the matrix inversion approach

Va(z) = RW)"‘VZP(ZU'Ifv,a=7r(:c))V7r(a:’) M’b:x
x! "j'
ve m T
m Solve by simple matrix inversion: Vi =[xl Vi) 7
\,/ G Know A TN jm T
I
\/ﬂ:g*x P\T\/ﬁ 2 - 2 —_—
MU - oo
(I ¥)V = % l el
— 4
SR Y
l
— (X

Y| & stz of A

A b

Computing the value of a policy 2 —

_ iteratively Vol [fofi)

Va(z) = R(z)+v) P(a'|z,a=n(x))Vr(z')

X

m If you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard! o

m Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
Start with some guess V, 4’?)’?5“"\"3 Vo=FK y { Lo
Iteratively say: E s

[] Vt+1:R+'YPth
Stop when ||Vt+1_vt||oo;\/9
= means that ||V -Vl < /(1-y) et 0 f GZ T Xpl' K)
\

| Vil = n 17e3] V, vi Vs

Verlut

11

Ngzee _
~_ But we want.to learn a Policy
" olieyis o =
m But how can we choose the pEsTE
best policy???

(200
uppose there was only one
time step:

=1 world is about to end!!! an(j 'S DP};/M;
1 select action that maximizes

reward! most i ""'”('w"%l
ok s J e

Chss TY()(\'.Z OWS Moy @b((“>
N

n(X,) = both peasants get wood

n(X,) = one peasant builds
barrack, other gets gold

n(X,) = peasants get gold,
footmen attack

12

Another recursion!

" A
= Two time steps: address tradeoffi& Vfeo)= et Rt)
good reward now T —

better reward in the future
Cou\hf}' AOWA ’1-0 U’Ox QHIU”

—_—

S’{WL(4.(oo L
t= | =0
£ of &x{uf jou\ C»éabﬂ(
O o1 o G

o ltHe ht = bod awaome SJZ‘WL‘-
\pérc”

M (Xa=1) = argema NCEYANIE ?Q(eo Xes O \JT/JJ
AN

A

Xkzo

Wovlh nave ends

Unrolling the recursion
" J

- Fhoose actions that lead to best value in the long run
g v;\:t Optlmal value policy achieves optimal value V*

b SR
V*(w0) = maxR(zo,a0) +7Eaolmax R(z1di+ 72Ea; [max R(:cz}}ﬁb’ 1
< \f _J
\/* ()(1)

)= ma L&) ey B[V

JEOY = X Llete a) +Y¥ 7 plx(%,a) Vix.)
o c

—

14

Bellman equation rgj..]
" A
= Evaluating policy n: / accdng B pelicy
Vj_(.x) = figa:) + va(:c/ | 2,0 = 7(x))Vx(z))

iB/

—_—

= Computing the optimal value V" - Bellman equation

V' (x) = max(R(x,a)+7 3 P(xx,aV* (x)

/ / a ! A\X\ \
Ve-br I’\Od\hmg \""““AL Jioe e, % Zl(f)a e

ot R e fLW W'\’&\ﬁu/

TAUT
p —ved \h?ogw\ N . me A o 1 O+ agt Y’P&

(601/\ N ((

15

Optimal Long -term Plan

Optlmal value
M - Optimal Policy: ©*(x) |/

Q" (x,a) = R(X, a)+7/ZP(X [X, 2)V"(x')
¥ 60 = ovgnac
Optimal policy: b 17 remyg

77 (X) =argmax Q*(x,a)

—— a

19 “\kgm/\fj poliy \r.v. t. \/H

16

Interesting fact — Unique value
" A
V*(X) = max R(x, a) +7) P(X'[x,a)V"(x")

m Slightly surprising fact: There is only one V" that solves
Bellman equation!
there may be many optimal policies that achieve V*

m Surprising fact: optimal policies are good everywhere!!!

Vae(z) > Vr(z), Vo, Va

all
vi» cs*f- o e Jm\%n' L\
otpkw\ Qo\'\o\j DA har (7”‘“” , o

g

17

Solving an MDP

Solve Optlmal
equanon

V (x) = max R(x. a)+7/ZP(x |x,a)V*(x")

Bellman equation is non-linear!!!
Many algorithms solve the Bellman equations:

m Policy iteration [Howard ‘60, Bellman ‘57
m Value iteration [Bellman ‘57]

m Linear programming [Manne ‘60]

H

18

Value Iteration (a.k.a. dynamic programming) —
the simplest of all

() = max R(x,a) +7/Z P(x'|X,a)V " (X')

e, VL o Bl

m Start with some guess V, <
O Iteratlvelv say:

Via(X) = max R(X, a)+7xz P(x'| x, a)V,(x")

P/

/}W’c‘ A A
Camfel Bac 3t
m Stop when ||V, -Vl <& rened i P
means that |[V*-V,,,||,, < &/(1-y) /t (fes
R

Vit L7 il s
Y L)

19

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

1
Roor & 2

Famous A

Poor &
Unknown

Rlch &
Unknown

+10

20

Let’'s compute V,(x) for our example

t [ViPu) | viPF) [ViRU) | V(RF)

OO0~ WIN|PF

\/;v*'*- 'I’{‘(_"‘f"\“”'
V.. (X) = max R(x,a) + 7Y P(X'|x,a)V,(X')

21

Let’'s compute V,(x) for our example

q\?{. WY

V,(PF)

V(RU)

V(RF)

10

10

4.5

14.5

19

6.53

25.08

18.55

12.20

29.63

19.26

15.07

32.00

20.40

17.65

33.58

22.43

V,a(%) = maxR(x,a) + 7Y P(X'| X, a)V, (x')

22

Policy iteration — Another approach for

computing ©
" o (%)=

/'.)ch' ﬁ”av;h\:\{ E.(th\

m Start with some guess for a policy r,

[| Iteratlvely Say. z_ﬁ,, b./é Mk'f“f'ix '(r\vgrsfdh
» evaluate policy: V() = R(x.a=7,(x)) +7 3, P(X'|,a = 0OV, (X

er A
- i%:ov‘g policy: 7, .(X) ='Hax R(x,a) + yz P(x'|x,a)V,(x")
—_— a ' mdf
e I’“‘?JC'—S
m Stop when Op frbé m“ o ey (+erdin b’ P‘(‘?J
policy stops changing how [":2 l}/,ll::mnxal?

m usually happens in about 10 iterations '1 +hink IO\"Y“SJ‘ } A8~
or [[Vyuy-Vill,, <

n){ ‘{
= means that [|[V*-V,,,||.. < &/(1-y) lowver Hov E A S

(~) girg'r“

Policy lteration & Value lteration:
Which Is best ?7??
" B

It depends.
Lots of actions? Choose Policy Iteration

Already got a fair policy? Policy Iteration

Few actions, acyclic? Value lteratio
— — RVLn here

Best of Both Worlds:
Modified Policy Iteration [Puterman]

~ .a simple mix of value iteration and policy iteration

-

(/\S(rH"ﬂ.-’A‘RVL O\?OerJA (’\S—\u&_/{ b’(’T\,QAY'L)Q

3'd Approach

Linear Programming

AVEsion s tvalude a Pot(o),

24

LP Solution to MDP
" A 'Manne ‘60]

Value computed by linear programmin %
vewiabls n LP ew

minimize: ;V(X) VO [vanisbl

VOR) = m R AETAL zri m (s) VX

A~

subject to: {V(X) = Rx, a)+72P(X | x,a)V (X')

. VX, a
6,('“ (600\ \/
m One variable V (x) for each state

m One constraint for each state x and action a

m Polynomial time solution
BN\ ﬁ@wsk«u\h Gt (70('3 no il in

<) Y\Q)VS AL TN V 25

. NY{(

What you need to know
" J
m What's a Markov decision process
state, actions, transitions, rewards
a policy o
value function for a policy
= computing V_
m Optimal value function and optimal policy
Bellman equation
m Solving Bellman equation

with value iteration, policy iteration and linear
programming

26

Acknowledgment
" A
m This lecture contains some material from

Andrew Moore’s excellent collection of ML
tutorials:

http://www.cs.cmu.edu/~awm/tutorials

27

http://www.cs.cmu.edu/~awm/tutorials

Reading:
Kaelbling et al. 1996 (see class website)

Reinforcement

Learning

Machine Learning — 10701/15781

Carlos Guestrin
Carnegie Mellon University

May 15t 2006 o

The Reinforcement Learning task
"

World:

Robot:
World:

Robot:
World:

You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

I'll take action 2.
You are in state 77.
Your immediate reward is -7. You have possible 2 actions.

I'll take action 1.
You're in state 34 (again).
Your immediate reward is 3. You have possible 3 actions.

29

Formalizing the (online)
reinforcement learning problem

" J

m Given a set of states X and actions A
In some versions of the problem size of X and A unknown

m Interact with world at each time step t: <%,/ %>
world gives state x; and reward r, SR A
: eyl - <ZZ,F2 "sz

you give next action a, o

T

m Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

30

The “Credit Assignment” Problem

"
LK<

I'm in state 43, reward = 0, action =2 0’/——— y

“ 39, =0, * =4 |

“ 22, =0, * =1

! 21, ! - U, . - 1 &\CHU\)

© 21, =0, =1 sy

“ 13, “ =0, * =2 oviw

“ b4, =0, * =2 \) \ (

‘26, “ =100, T~

ol qﬁ;:L

Yippee! | got to a state with a big reward! But which of my

actions along the way actually helped me get there??

This is the Credit Assignment problem. 4 CX‘])Q’J LS
W1 v 1 a1

Exploration-Exploitation tradeoff

" B N
m You have visited part of the state
space and found a reward of 100

IS this the best | can hope for???

k ho‘-\/’\

m Exploitation: should I stick with
what | know and find a good
policy w.r.t. this knowledge?

at the risk of missing out on some
large reward somewhere

O Exploratlon should | look for a

"With 1
region with more reward?

at the risk of wasting my time or o N
collecting a lot of negative reward

—

32

Two main reinforcement learning

] aggroaches

m Model-based approaches:

explore environment — learn model (P(x’|x,a) and R(x,a))
(almost) everywhere

use model to plan policy, MDP-style
approach leads to strongest theoretical results
works quite well in practice when state space is manageable

m Model-free approach: U 7t
don’t learn a model — learn value function or policy directly

leads to weaker theoretical results -
often works well when state space is large

33

Brafman & Tennenholtz 2002
(see class website)

Rmax — A model-

based approach

Given a dataset — learn model
"
Given data, learn (MDP) Representation:
m Dataset:

m Learn reward function:
1 R(x,a)

m Learn transition model:

0 P(X’|x,a)

35

Some challenges in model-based RL 1.
Planning with insufficient information

m Model-based approach:
estimate R(x,a) & P(X’|x,a)
obtain policy by value or policy iteration, or linear programming
No credit assignment problem — learning model, planning algorithm takes
care of “assigning” credit

What do you plug in when you don’t have enough information
about a state?

don’t reward at a particular state
= plug in smallest reward (R,i,)?
m plug in largest reward (R,.,)?

don’t know a particular transition probability?

36

Some challenges in model-based RL 2:
Exploration-Exploitation tradeof

m A state may be very hard to reach

waste a lot of time trying to learn rewards and
transitions for this state

after a much effort, state may be useless

m A strong advantage of a model-based approach:

you know which states estimate for rewards and
transitions are bad

can (try) to plan to reach these states
have a good estimate of how long it takes to get there

37

A surprisingly simple approach for model
E)aSEd RL - The RmaX algOrIthm [Brafman & Tennenholtz]
=
m Optimism in the face of uncertainty!!!!
heuristic shown to be useful long before theory was done
(e.g., Kaelbling '90)
m If you don’t know reward for a particular state-action
pair, setitto R !

m If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x,!!!

R(XO’a) - Rmax
P(XolXg,2) =1

38

Understanding R ..,
" J

m With R, you either:

explore — visit a state-action
pair you don’t know much

about

m because it seems to have lots of \
potential

exploit — spend all your time
on known states

m even if unknown states were
amazingly good, it’s not worth it

m Note: you never know if you
are exploring or exploiting!!!

39

Implicit Exploration-Exploitation Lemma
" J
m Lemma: every T time steps, either:

Exploits: achieves near-optimal reward for these T-steps, or

Explores: with high probability, the agent visits an unknown
state-action pair
m learns a little about an unknown state

T is related to mixing time of Markov chain defined by MDP
m time it takes to (approximately) forget where you started

40

The Rmax algorithm
"

m Initialization:
Add state x,to MDP
R(x,a) = R, ¥X,a
P(x,lx,a) = 1, Vx,a
all states (except for x,) are unknown
m Repeat
obtain policy for current MDP and Execute policy

for any visited state-action pair, set reward function to appropriate value

If visited some state-action pair x,a enough times to estimate P(x’|x,a)
m update transition probs. P(x’|x,a) for x,a using MLE
m recompute policy

41

Visit enough times to estimate P(x’|x,a)?
" J
m How many times are enough?
use Chernoff Bound!

m Chernoff Bound:

Xy--, X, are 1.i.d. Bernoulli trials with prob. 6
P(|1/n 2 X. - 0] > €) < exp{-2ne?}

42

Putting It all together

" A

m Theorem: With prob. at least 1-5, Rmax will reach a
g-optimal policy in time polynomial in: num. states,
num. actions, T, 1/g, 1/

Every T steps:

m achieve near optimal reward (great!), or

m Visit an unknown state-action pair — num. states and actions is
finite, so can’t take too long before all states are known

43

Problems with model-based approach
" A
m If state space is large

transition matrix is very large!
requires many visits to declare a state as know

m Hard to do “approximate” learning with large
State spaces
some options exist, though

44

TD-Learning and

Q-learning — Model-
free approaches

Value of Pollcy

Expected long-

term reward
starting from X

Future rewards
discounted by y € [0,1)

A simple monte-carlo policy evaluation
" A
m Estimate V(x), start several trajectories from x —

V(X) Is average reward from these trajectories

Hoeffding’s inequality tells you how many you need

discounted reward — don’t have to run each
trajectory forever to get reward estimate

47

Problems with monte-carlo approach
" S
m Resets: assumes yOUu Can restart process from
same state many times

m Wasteful. same trajectory can be used to
estimate many states

48

Reusing trajectories
" J

m Value determination:

y £\ — 7 AN ' X N7 1 _ 7 NNt r 7 I

n(r) = nlx) v @ |x,a=7(x))Va(T)
I

m Expressed as an expectation over next states:

Ve(z) = R(z)+~E |Va(a!) | 2,0 = 7(a))

L d

m Initialize value function (zeros, at random,...)
m |dea 1: Observe a transition: X, —X,,,,l.1, approximate expec. with single sample:

unbiased!!

but a very bad estimate!!!
49

Simple fix: Temporal Difference

. (D) Learninp

m |dea 2: Observe a transition: X, —X,1,l+1, approximate expec. by mixture of
new sample with old estimate:

o>0 is learning rate

50

TD converges (can take a long time!!!)

"
Ve(z) = R(z)+~v) P@E'|z,a=n(z))Vx(z")
m Theorem: TD converges in the limit (with prob. 1), If:
every state is visited infinitely often
Learning rate decays just so:

m 2™ 04 = 00

m 2™ 0 <00

51

	Markov DecisionProcesses (MDPs)
	Announcements
	Discount Factors
	The Academic Life
	Computing the Future Rewards of an Academic
	Joint Decision Space
	Policy
	Value of Policy
	Computing the value of a policy
	Computing the value of a policy 1 – the matrix inversion approach
	Computing the value of a policy 2 – iteratively
	But we want to learn a Policy
	Another recursion!
	Unrolling the recursion
	Bellman equation
	Optimal Long-term Plan
	Interesting fact – Unique value
	Solving an MDP
	Value iteration (a.k.a. dynamic programming) – the simplest of all
	A simple example
	Let’s compute Vt(x) for our example
	Let’s compute Vt(x) for our example
	Policy iteration – Another approach for computing *
	Policy Iteration & Value Iteration: Which is best ???
	LP Solution to MDP
	What you need to know
	Acknowledgment
	Reinforcement Learning
	The Reinforcement Learning task
	Formalizing the (online) reinforcement learning problem
	The “Credit Assignment” Problem
	Exploration-Exploitation tradeoff
	Two main reinforcement learning approaches
	Rmax – A model-based approach
	Given a dataset – learn model
	Some challenges in model-based RL 1:Planning with insufficient information
	Some challenges in model-based RL 2:Exploration-Exploitation tradeoff
	A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]
	Understanding Rmax
	Implicit Exploration-Exploitation Lemma
	The Rmax algorithm
	Visit enough times to estimate P(x’|x,a)?
	Putting it all together
	Problems with model-based approach
	TD-Learning and Q-learning – Model-free approaches
	Value of Policy
	A simple monte-carlo policy evaluation
	Problems with monte-carlo approach
	Reusing trajectories
	Simple fix: Temporal Difference (TD) Learning
	TD converges (can take a long time!!!)

