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Announcements
" A
m Project:

Poster session: Friday May 5™ 2-5pm, NSH Atrium
m please arrive a little early to set up

m FCEs!!!

Please, please, please, please, please, please give
us your feedback, it helps us improve the class! ©
s http://www.cmu.edu/fce
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Discount Factors

People in economics and probabilistic decision-making do

this all the time.

The “Discounted sum of future rewards” using discount

factor vy’ is
(reward now) +

¥ E(o, l>

v (reward in 1 time step) +
vy 2 (reward in 2 time steps) +
y 3 (reward in 3 time steps) +

(infinite sum)
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The Academic Life sk enios
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Street
Define:
V, = Expected discounted future rewards starting in state A

e

Vg = Expected discounted future rewards starting in state B
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How do we compute V,, Vg, V4, Vg, Vp ?
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Computing the Future Rewards of

an Academic
JE
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Assume Discount
Factory = 0.9
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Joint Decision Space
"
Markov Decision Process (MDP) Representation:
m State space:

Joint state x of entire system

P

m Action space.:

Joint actionj}i{al,..., a,} for all agents

m Reward function: /

Total reward R(x,a)

——

—

m sometimes reward can depend on action X""( 1
—Joco

m Transition model:

Dynamics of the entire system P(x’|x,a)




At state X,
action a for all

agents

“()il) = one peasant builds
barrack, other gets gold

= peasants get gold,
footmen attack




Value of Pollcy

Expected long-

term reward
starting from_x

Future rewards
discounted by y e [0, 1)



Computing the value of a policy

m Discounted value of a state: a— Wf\knﬁf,,’“%wi"f Hoa

value of starting from x, and continuing with policy = from then on
Vr(z0) = Ex[R(z0) +yR(z1) +~°R(z2) + v’ R(x3) + -]
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Computing the value of a policy 1 —

the matrix inversion approach

Va(z) = RW)"‘VZP(ZU'Ifv,a=7r(:c))V7r(a:’) M’b:x
x! "j'
ve m T
m Solve by simple matrix inversion: Vi =[xl Vi) 7
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Computing the value of a policy 2 —

_ iteratively Vol [fofi)

Va(z) = R(z)+v) P(a'|z,a=n(x))Vr(z')

X

m If you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard! o

m Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
Start with some guess V, 4’?)’?5“"\"3 Vo=FK y { Lo
Iteratively say: E s

[ ] Vt+1:R+'YPth
Stop when ||Vt+1_vt||oo;\/9
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Ngzee _
~_ But we want.to learn a Policy
" olieyis o =
m But how can we choose the pEsTE
best policy???

( 200
uppose there was only one
time step:

=1 world is about to end!!! an(j 'S DP};/M;
1 select action that maximizes

reward! most i ""'”('w"%l
ok s J e

Chss TY()(\'.Z OWS Moy @b((“>
N

n(X,) = both peasants get wood

n(X,) = one peasant builds
barrack, other gets gold

n(X,) = peasants get gold,
footmen attack
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Another recursion!

" A
= Two time steps: address tradeoffi& Vfeo)= et Rt )
good reward now T —

better reward in the future
Cou\hf}' AOWA ’1-0 U’Ox QHIU”
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Wovlh nave  ends

Unrolling the recursion
" J

- Fhoose actions that lead to best value in the long run
g v;\:t Optlmal value policy achieves optimal value V*

b SR
V*(w0) = maxR(zo,a0) +7Eaolmax R(z1di+ 72Ea; [max R(:cz}}ﬁb’ 1
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Bellman equation  rgj.. ]
" A
= Evaluating policy n: / accdng B pelicy
Vj_(.x) = figa:) + va(:c/ | 2,0 = 7(x))Vx(z))

iB/

—_—

= Computing the optimal value V" - Bellman equation

V' (x) = max(R(x,a)+7 3 P(xx,aV* (x)

/ / a ! A\X\ \
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Optimal Long -term Plan

Optlmal value
M - Optimal Policy: ©*(x) |/

Q" (x,a) = R(X, a)+7/ZP(X [ X, 2)V"(x')
¥ 60 = ovgnac
Optimal policy: b 17 remyg

77 (X) =argmax Q*(x,a)

—— a

19 “\kgm/\fj poliy \r.v. t. \/H
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Interesting fact — Unique value
" A
V*(X) = max R(x, a) +7 ) P(X'[x,a)V"(x")

m Slightly surprising fact: There is only one V" that solves
Bellman equation!
there may be many optimal policies that achieve V*

m Surprising fact: optimal policies are good everywhere!!!

Vae(z) > Vr(z), Vo, Va

all
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g
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Solving an MDP

Solve Optlmal
equanon

V (x) = max R(x. a)+7/ZP(x |x,a)V*(x")

Bellman equation is non-linear!!!
Many algorithms solve the Bellman equations:

m Policy iteration [Howard ‘60, Bellman ‘57
m Value iteration [Bellman ‘57]

m Linear programming [Manne ‘60]

H
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Value Iteration (a.k.a. dynamic programming) —
the simplest of all

() = max R(x,a) +7/Z P(x'|X,a)V " (X')

e, VL o Bl

m Start with some guess V, <
O Iteratlvelv say:

Via(X) = max R(X, a)+7xz P(x'| x, a)V,(x")

P/

/}W’c‘ A A
Camfel Bac 3t
m Stop when ||V, -Vl <&  rened i P
means that |[V*-V,,,||,, < &/(1-y) /t ( fes
R

Vit L7 il s
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A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

1
Roor & 2

Famous A

Poor &
Unknown

Rlch &
Unknown

+10
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Let’'s compute V,(x) for our example

t [ViPu) | viPF) [ ViRU) | V(RF)

OO0~ WIN|PF

\/;v\*'*- 'I’{‘(_"‘f"\“”'
V.. (X) = max R(x,a) + 7Y P(X'|x,a)V,(X')

21



Let’'s compute V,(x) for our example

q\?{. WY

V,(PF)

V(RU)

V(RF)

10

10

4.5

14.5

19

6.53

25.08

18.55

12.20

29.63

19.26

15.07

32.00

20.40

17.65

33.58

22.43

V,a(%) = maxR(x,a) + 7Y P(X'| X, a)V, (x')
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Policy iteration — Another approach for

computing ©
" o (%)=

/'.)ch' ﬁ”av;h\:\{ E.(th\

m Start with some guess for a policy r,

[ | Iteratlvely Say. z_ﬁ,, b./é Mk'f“f'ix '(r\vgrsfdh
» evaluate policy: V() = R(x.a=7,(x)) +7 3, P(X'|,a = 0OV, (X

er A
- i%:ov‘g policy: 7, .(X) ='Hax R(x,a) + yz P(x'|x,a)V,(x")
—_— a ' mdf
e I’“‘?JC'—S
m Stop when Op frbé m“ o ey (+erdin b’ P‘(‘?J
policy stops changing how [":2 l}/,ll::mnxal?

m usually happens in about 10 iterations '1 +hink IO\"Y“SJ‘ } A8~
or [[Vyuy-Vill,, <
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Policy lteration & Value lteration:
Which Is best ?7??
" B

It depends.
Lots of actions? Choose Policy Iteration

Already got a fair policy? Policy Iteration

Few actions, acyclic? Value lteratio
— — RVLn here

Best of Both Worlds:
Modified Policy Iteration [Puterman]

~ .a simple mix of value iteration and policy iteration

-

(/\S( rH"ﬂ.-’A‘RVL O\?OerJA (’\S—\u&_/{ b’( ’T\,QAY'L)Q

3'd Approach

Linear Programming

AVEsion s tvalude a Pot(o),

24



LP Solution to MDP
" A 'Manne ‘60]

Value computed by linear programmin %
vewiabls n LP ew

minimize: ;V(X) VO [ vanisbl

VOR) = m R AETAL zri m (s ) VX

A~

subject to: {V(X) = Rx, a)+72P(X | x,a)V (X')

. VX, a
6,('“ (600\ \/
m One variable V (x) for each state

m One constraint for each state x and action a

m Polynomial time solution
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What you need to know
" J
m What's a Markov decision process
state, actions, transitions, rewards
a policy o
value function for a policy
= computing V_
m Optimal value function and optimal policy
Bellman equation
m Solving Bellman equation

with value iteration, policy iteration and linear
programming

26



Acknowledgment
" A
m This lecture contains some material from

Andrew Moore’s excellent collection of ML
tutorials:

http://www.cs.cmu.edu/~awm/tutorials
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The Reinforcement Learning task
"

World:

Robot:
World:

Robot:
World:

You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

I'll take action 2.
You are in state 77.
Your immediate reward is -7. You have possible 2 actions.

I'll take action 1.
You're in state 34 (again).
Your immediate reward is 3. You have possible 3 actions.

29



Formalizing the (online)
reinforcement learning problem

" J

m Given a set of states X and actions A
In some versions of the problem size of X and A unknown

m Interact with world at each time step t: <%,/ %>
world gives state x; and reward r, SR A
: eyl - <ZZ,F2 "sz

you give next action a, o

T

m Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

30



The “Credit Assignment” Problem

"
LK<

I'm in state 43, reward = 0, action =2 0’/——— y

“ 39, =0, * =4 |

“ 22, =0, * =1

! 21, ! - U, . - 1 &\CHU\)

© 21, =0, =1 sy

“ 13, “ =0, * =2 oviw

“ b4, =0, * =2 \ ) \ (

‘26, “ =100, T~

ol qﬁ;:L

Yippee! | got to a state with a big reward! But which of my

actions along the way actually helped me get there??

This is the Credit Assignment problem. 4 CX‘])Q’J LS
W1 v 1 a1



Exploration-Exploitation tradeoff

" B N
m You have visited part of the state
space and found a reward of 100

IS this the best | can hope for???

k ho‘-\/’\

m Exploitation: should I stick with
what | know and find a good
policy w.r.t. this knowledge?

at the risk of missing out on some
large reward somewhere

O Exploratlon should | look for a

"With 1
region with more reward?

at the risk of wasting my time or o N
collecting a lot of negative reward

—

32




Two main reinforcement learning

] aggroaches

m Model-based approaches:

explore environment — learn model (P(x’|x,a) and R(x,a))
(almost) everywhere

use model to plan policy, MDP-style
approach leads to strongest theoretical results
works quite well in practice when state space is manageable

m Model-free approach: U 7t
don’t learn a model — learn value function or policy directly

leads to weaker theoretical results -
often works well when state space is large

33



Brafman & Tennenholtz 2002
(see class website)

Rmax — A model-

based approach




Given a dataset — learn model
"
Given data, learn (MDP) Representation:
m Dataset:

m Learn reward function:
1 R(x,a)

m Learn transition model:

0 P(X’|x,a)

35



Some challenges in model-based RL 1.
Planning with insufficient information

m Model-based approach:
estimate R(x,a) & P(X’|x,a)
obtain policy by value or policy iteration, or linear programming
No credit assignment problem — learning model, planning algorithm takes
care of “assigning” credit

What do you plug in when you don’t have enough information
about a state?

don’t reward at a particular state
= plug in smallest reward (R,i,)?
m plug in largest reward (R,.,)?

don’t know a particular transition probability?

36



Some challenges in model-based RL 2:
Exploration-Exploitation tradeof

m A state may be very hard to reach

waste a lot of time trying to learn rewards and
transitions for this state

after a much effort, state may be useless

m A strong advantage of a model-based approach:

you know which states estimate for rewards and
transitions are bad

can (try) to plan to reach these states
have a good estimate of how long it takes to get there

37



A surprisingly simple approach for model
E)aSEd RL - The RmaX algOrIthm [Brafman & Tennenholtz]
=
m Optimism in the face of uncertainty!!!!
heuristic shown to be useful long before theory was done
(e.g., Kaelbling '90)
m If you don’t know reward for a particular state-action
pair, setitto R !

m If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x,!!!

R(XO’a) - Rmax
P(XolXg,2) =1

38



Understanding R ..,
" J

m With R, you either:

explore — visit a state-action
pair you don’t know much

about

m because it seems to have lots of \
potential

exploit — spend all your time
on known states

m even if unknown states were
amazingly good, it’s not worth it

m Note: you never know if you
are exploring or exploiting!!!

39



Implicit Exploration-Exploitation Lemma
" J
m Lemma: every T time steps, either:

Exploits: achieves near-optimal reward for these T-steps, or

Explores: with high probability, the agent visits an unknown
state-action pair
m learns a little about an unknown state

T is related to mixing time of Markov chain defined by MDP
m time it takes to (approximately) forget where you started

40



The Rmax algorithm
"

m Initialization:
Add state x,to MDP
R(x,a) = R, ¥X,a
P(x,lx,a) = 1, Vx,a
all states (except for x,) are unknown
m Repeat
obtain policy for current MDP and Execute policy

for any visited state-action pair, set reward function to appropriate value

If visited some state-action pair x,a enough times to estimate P(x’|x,a)
m update transition probs. P(x’|x,a) for x,a using MLE
m recompute policy

41



Visit enough times to estimate P(x’|x,a)?
" J
m How many times are enough?
use Chernoff Bound!

m Chernoff Bound:

Xy--, X, are 1.i.d. Bernoulli trials with prob. 6
P(|1/n 2 X. - 0] > €) < exp{-2ne?}

42



Putting It all together

" A

m Theorem: With prob. at least 1-5, Rmax will reach a
g-optimal policy in time polynomial in: num. states,
num. actions, T, 1/g, 1/

Every T steps:

m achieve near optimal reward (great!), or

m Visit an unknown state-action pair — num. states and actions is
finite, so can’t take too long before all states are known

43



Problems with model-based approach
" A
m If state space is large

transition matrix is very large!
requires many visits to declare a state as know

m Hard to do “approximate” learning with large
State spaces
some options exist, though

44



TD-Learning and

Q-learning — Model-
free approaches




Value of Pollcy

Expected long-

term reward
starting from X

Future rewards
discounted by y € [0,1)



A simple monte-carlo policy evaluation
" A
m Estimate V(x), start several trajectories from x —

V(X) Is average reward from these trajectories

Hoeffding’s inequality tells you how many you need

discounted reward — don’t have to run each
trajectory forever to get reward estimate

47



Problems with monte-carlo approach
" S
m Resets: assumes yOUu Can restart process from
same state many times

m Wasteful. same trajectory can be used to
estimate many states

48



Reusing trajectories
" J

m Value determination:

y £\ — 7 AN ' X N7 1 _ 7 NNt r 7 I

n(r) = nlx) v @ |x,a=7(x))Va(T)
I

m Expressed as an expectation over next states:

Ve(z) = R(z)+~E |Va(a!) | 2,0 = 7(a))

L d

m Initialize value function (zeros, at random,...)
m |dea 1: Observe a transition: X, —X,,,,l.1, approximate expec. with single sample:

unbiased!!

but a very bad estimate!!!
49



Simple fix: Temporal Difference

. (D) Learninp

m |dea 2: Observe a transition: X, —X,1,l+1, approximate expec. by mixture of
new sample with old estimate:

o>0 is learning rate

50



TD converges (can take a long time!!!)

"
Ve(z) = R(z)+~v) P@E'|z,a=n(z))Vx(z")
m Theorem: TD converges in the limit (with prob. 1), If:
every state is visited infinitely often
Learning rate decays just so:

m 2™ 04 = 00

m 2™ 0 <00
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