
1

Reading:
Kaelbling et al. 1996 (see class website)

Markov Decision
Processes (MDPs)
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 1st, 2006

2

Announcements

� Project:
� Poster session: Friday May 5th 2-5pm, NSH Atrium

� please arrive a little early to set up

� FCEs!!!!
� Please, please, please, please, please, please give

us your feedback, it helps us improve the class! ☺
� http://www.cmu.edu/fce

http://www.cmu.edu/fce

3

Discount Factors

People in economics and probabilistic decision-making do
this all the time.
The “Discounted sum of future rewards” using discount
factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
: (infinite sum)

4

The Academic Life

Define:
VA = Expected discounted future rewards starting in state A
VB = Expected discounted future rewards starting in state B
VT = “ “ “ “ “ “ “ T
VS = “ “ “ “ “ “ “ S
VD = “ “ “ “ “ “ “ D

How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

5

Computing the Future Rewards of
an Academic

Assume Discount
Factor γ = 0.9

0.7
A.

Assistant
Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

6

Joint Decision Space

� State space:
� Joint state x of entire system

� Action space:
� Joint action a= {a1,…, an} for all agents

� Reward function:
� Total reward R(x,a)

� sometimes reward can depend on action

� Transition model:
� Dynamics of the entire system P(x’|x,a)

Markov Decision Process (MDP) Representation:

7

Policy

Policy: π(x) = a
At state x,

action a for all
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

8

Value of Policy
Expected long-
term reward

starting from x
Value: Vπ(x)

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + L]

Future rewards
discounted by γ ∈ [0,1)x1

R(x1)

x1’’

x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

Computing the value of a policy

9

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + L]

� Discounted value of a state:
� value of starting from x0 and continuing with policy π from then on

� A recursion!

10

Computing the value of a policy 1 –
the matrix inversion approach

� Solve by simple matrix inversion:

11

Computing the value of a policy 2 –
iteratively

� If you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard!

� Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
� Start with some guess V0

� Iteratively say:
� Vt+1 = R + γ Pπ Vt

� Stop when ||Vt+1-Vt||∞ · ε
� means that ||Vπ-Vt+1||∞ · ε/(1-γ)

12

But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

� So far, told you how good a
policy is…

� But how can we choose the
best policy???

� Suppose there was only one
time step:
� world is about to end!!!
� select action that maximizes

reward!

13

Another recursion!

� Two time steps: address tradeoff
� good reward now
� better reward in the future

14

Unrolling the recursion

� Choose actions that lead to best value in the long run
� Optimal value policy achieves optimal value V*

15

Bellman equation

� Evaluating policy π:

� Computing the optimal value V* - Bellman equation

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

16

Optimal Long-term Plan

Optimal value
function V*(x)

Optimal Policy: π*(x)

Optimal policy:
)a,x(maxarg)x(

a

∗∗ = Qπ

∑ ∗∗ +=
'

)'(),|'(),(),(
x

xaxxaxax VPRQ γ

17

Interesting fact – Unique value

� Slightly surprising fact: There is only one V* that solves
Bellman equation!
� there may be many optimal policies that achieve V*

� Surprising fact: optimal policies are good everywhere!!!

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

18

Solving an MDP
Solve

Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

� Policy iteration [Howard ‘60, Bellman ‘57]

� Value iteration [Bellman ‘57]

� Linear programming [Manne ‘60]

� …

19

Value iteration (a.k.a. dynamic programming) –
the simplest of all

� Start with some guess V0

� Iteratively say:
�

� Stop when ||Vt+1-Vt||∞ · ε
� means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ

20

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

21

Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1
2
3
4
5
6

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ

22

Let’s compute Vt(x) for our example

t Vt(PU) Vt(PF) Vt(RU) Vt(RF)

1 0 0 10 10
2 0 4.5 14.5 19
3 2.03 6.53 25.08 18.55
4 3.852 12.20 29.63 19.26
5 7.22 15.07 32.00 20.40
6 10.03 17.65 33.58 22.43

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ

23

Policy iteration – Another approach for
computing π*

� Start with some guess for a policy π0

� Iteratively say:
� evaluate policy:

� improve policy:

� Stop when
� policy stops changing

� usually happens in about 10 iterations
� or ||Vt+1-Vt||∞ · ε

� means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPR γπ

∑ =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx tttt VPRV πγπ

24

Policy Iteration & Value Iteration:
Which is best ???
It depends.

Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:
Modified Policy Iteration [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

25

LP Solution to MDP
Value computed by linear programming:

� One variable V (x) for each state
� One constraint for each state x and action a
� Polynomial time solution

[Manne ‘60]

:subject to

:minimize

⎩
⎨
⎧ ≥

∑

,∀ ax

x

)(xV

)(xV)(xV

,∀ ax
)(xV ∑+

'

)'(),|'(),(
x

xaxxax VPR γ

26

What you need to know

� What’s a Markov decision process
� state, actions, transitions, rewards
� a policy
� value function for a policy

� computing Vπ

� Optimal value function and optimal policy
� Bellman equation

� Solving Bellman equation
� with value iteration, policy iteration and linear

programming

27

Acknowledgment

� This lecture contains some material from
Andrew Moore’s excellent collection of ML
tutorials:
� http://www.cs.cmu.edu/~awm/tutorials

http://www.cs.cmu.edu/~awm/tutorials

28

Reading:
Kaelbling et al. 1996 (see class website)

Reinforcement
Learning
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 1st, 2006

29

The Reinforcement Learning task

World: You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

Robot: I’ll take action 2.
World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I’ll take action 1.
World: You’re in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

30

Formalizing the (online)
reinforcement learning problem

� Given a set of states X and actions A
� in some versions of the problem size of X and A unknown

� Interact with world at each time step t:
� world gives state xt and reward rt

� you give next action at

� Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted reward

31

The “Credit Assignment” Problem

Yippee! I got to a state with a big reward! But which of my
actions along the way actually helped me get there??
This is the Credit Assignment problem.

I’m in state 43, reward = 0, action = 2
“ “ “ 39, “ = 0, “ = 4
“ “ “ 22, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 21, “ = 0, “ = 1
“ “ “ 13, “ = 0, “ = 2
“ “ “ 54, “ = 0, “ = 2
“ “ “ 26, “ = 100,

32

Exploration-Exploitation tradeoff

� You have visited part of the state
space and found a reward of 100
� is this the best I can hope for???

� Exploitation: should I stick with
what I know and find a good
policy w.r.t. this knowledge?
� at the risk of missing out on some

large reward somewhere
� Exploration: should I look for a

region with more reward?
� at the risk of wasting my time or

collecting a lot of negative reward

33

Two main reinforcement learning
approaches

� Model-based approaches:
� explore environment → learn model (P(x’|x,a) and R(x,a))

(almost) everywhere
� use model to plan policy, MDP-style
� approach leads to strongest theoretical results
� works quite well in practice when state space is manageable

� Model-free approach:
� don’t learn a model → learn value function or policy directly
� leads to weaker theoretical results
� often works well when state space is large

34

Brafman & Tennenholtz 2002
(see class website)

Rmax – A model-
based approach

35

Given a dataset – learn model
Given data, learn (MDP) Representation:

� Dataset:

� Learn reward function:
� R(x,a)

� Learn transition model:
� P(x’|x,a)

36

Some challenges in model-based RL 1:
Planning with insufficient information
� Model-based approach:

� estimate R(x,a) & P(x’|x,a)
� obtain policy by value or policy iteration, or linear programming
� No credit assignment problem → learning model, planning algorithm takes

care of “assigning” credit

� What do you plug in when you don’t have enough information
about a state?
� don’t reward at a particular state

� plug in smallest reward (Rmin)?
� plug in largest reward (Rmax)?

� don’t know a particular transition probability?

37

Some challenges in model-based RL 2:
Exploration-Exploitation tradeoff
� A state may be very hard to reach

� waste a lot of time trying to learn rewards and
transitions for this state

� after a much effort, state may be useless

� A strong advantage of a model-based approach:
� you know which states estimate for rewards and

transitions are bad
� can (try) to plan to reach these states
� have a good estimate of how long it takes to get there

38

A surprisingly simple approach for model
based RL – The Rmax algorithm [Brafman & Tennenholtz]

� Optimism in the face of uncertainty!!!!
� heuristic shown to be useful long before theory was done

(e.g., Kaelbling ’90)
� If you don’t know reward for a particular state-action

pair, set it to Rmax!!!

� If you don’t know the transition probabilities
P(x’|x,a) from some some state action pair x,a
assume you go to a magic, fairytale new state x0!!!
� R(x0,a) = Rmax

� P(x0|x0,a) = 1

39

Understanding Rmax

� With Rmax you either:
� explore – visit a state-action

pair you don’t know much
about
� because it seems to have lots of

potential

� exploit – spend all your time
on known states
� even if unknown states were

amazingly good, it’s not worth it

� Note: you never know if you
are exploring or exploiting!!!

40

Implicit Exploration-Exploitation Lemma

� Lemma: every T time steps, either:
� Exploits: achieves near-optimal reward for these T-steps, or
� Explores: with high probability, the agent visits an unknown

state-action pair
� learns a little about an unknown state

� T is related to mixing time of Markov chain defined by MDP
� time it takes to (approximately) forget where you started

41

The Rmax algorithm

� Initialization:
� Add state x0 to MDP
� R(x,a) = Rmax, ∀x,a
� P(x0|x,a) = 1, ∀x,a
� all states (except for x0) are unknown

� Repeat
� obtain policy for current MDP and Execute policy

� for any visited state-action pair, set reward function to appropriate value

� if visited some state-action pair x,a enough times to estimate P(x’|x,a)
� update transition probs. P(x’|x,a) for x,a using MLE
� recompute policy

42

Visit enough times to estimate P(x’|x,a)?

� How many times are enough?
� use Chernoff Bound!

� Chernoff Bound:
� X1,…,Xn are i.i.d. Bernoulli trials with prob. θ
� P(|1/n ∑i Xi - θ| > ε) · exp{-2nε2}

43

Putting it all together

� Theorem: With prob. at least 1-δ, Rmax will reach a
ε-optimal policy in time polynomial in: num. states,
num. actions, T, 1/ε, 1/δ
� Every T steps:

� achieve near optimal reward (great!), or
� visit an unknown state-action pair → num. states and actions is

finite, so can’t take too long before all states are known

44

Problems with model-based approach

� If state space is large
� transition matrix is very large!
� requires many visits to declare a state as know

� Hard to do “approximate” learning with large
state spaces
� some options exist, though

45

TD-Learning and
Q-learning – Model-
free approaches

46

Value of Policy
Expected long-
term reward

starting from x
Value: Vπ(x)

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + L]

Future rewards
discounted by γ ∈ [0,1)x1

R(x1)

x1’’

x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

47

A simple monte-carlo policy evaluation

� Estimate V(x), start several trajectories from x →
V(x) is average reward from these trajectories
� Hoeffding’s inequality tells you how many you need
� discounted reward → don’t have to run each

trajectory forever to get reward estimate

48

Problems with monte-carlo approach

� Resets: assumes you can restart process from
same state many times

� Wasteful: same trajectory can be used to
estimate many states

49

Reusing trajectories

� Value determination:

� Expressed as an expectation over next states:

� Initialize value function (zeros, at random,…)
� Idea 1: Observe a transition: xt →xt+1,rt+1, approximate expec. with single sample:

� unbiased!!
� but a very bad estimate!!!

50

Simple fix: Temporal Difference
(TD) Learning

� Idea 2: Observe a transition: xt →xt+1,rt+1, approximate expec. by mixture of
new sample with old estimate:

� α>0 is learning rate

51

TD converges (can take a long time!!!)

� Theorem: TD converges in the limit (with prob. 1), if:
� every state is visited infinitely often
� Learning rate decays just so:

� ∑i=1
∞ αi = ∞

� ∑i=1
∞ αi

2 < ∞

	Markov DecisionProcesses (MDPs)
	Announcements
	Discount Factors
	The Academic Life
	Computing the Future Rewards of an Academic
	Joint Decision Space
	Policy
	Value of Policy
	Computing the value of a policy
	Computing the value of a policy 1 – the matrix inversion approach
	Computing the value of a policy 2 – iteratively
	But we want to learn a Policy
	Another recursion!
	Unrolling the recursion
	Bellman equation
	Optimal Long-term Plan
	Interesting fact – Unique value
	Solving an MDP
	Value iteration (a.k.a. dynamic programming) – the simplest of all
	A simple example
	Let’s compute Vt(x) for our example
	Let’s compute Vt(x) for our example
	Policy iteration – Another approach for computing *
	Policy Iteration & Value Iteration: Which is best ???
	LP Solution to MDP
	What you need to know
	Acknowledgment
	Reinforcement Learning
	The Reinforcement Learning task
	Formalizing the (online) reinforcement learning problem
	The “Credit Assignment” Problem
	Exploration-Exploitation tradeoff
	Two main reinforcement learning approaches
	Rmax – A model-based approach
	Given a dataset – learn model
	Some challenges in model-based RL 1:Planning with insufficient information
	Some challenges in model-based RL 2:Exploration-Exploitation tradeoff
	A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]
	Understanding Rmax
	Implicit Exploration-Exploitation Lemma
	The Rmax algorithm
	Visit enough times to estimate P(x’|x,a)?
	Putting it all together
	Problems with model-based approach
	TD-Learning and Q-learning – Model-free approaches
	Value of Policy
	A simple monte-carlo policy evaluation
	Problems with monte-carlo approach
	Reusing trajectories
	Simple fix: Temporal Difference (TD) Learning
	TD converges (can take a long time!!!)

