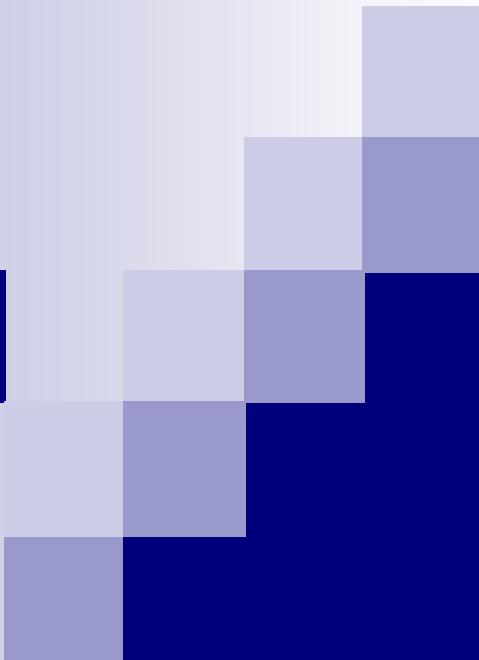


Reading:

Kaelbling et al. 1996 (see class website)



Markov Decision Processes (MDPs)

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

May 1st, 2006

Announcements

- Project:

- Poster session: Friday May 5th 2-5pm, NSH Atrium
 - please arrive a little early to set up

- FCEs!!!!

- Please, please, please, please, please, please give us your feedback, it helps us improve the class! ☺
 - <http://www.cmu.edu/fce>

Discount Factors

People in economics and probabilistic decision-making do this all the time.

The “Discounted sum of future rewards” using discount factor γ is

$$\gamma \in (0, 1)$$

(reward now) +

γ (reward in 1 time step) +

γ^2 (reward in 2 time steps) +

γ^3 (reward in 3 time steps) +

:

: (infinite sum)

for example:

$$20 +$$

$$\gamma \cdot 20 +$$

$$\gamma^2 \cdot 20 +$$

$$\gamma^3 \cdot 20 +$$

;

geometric

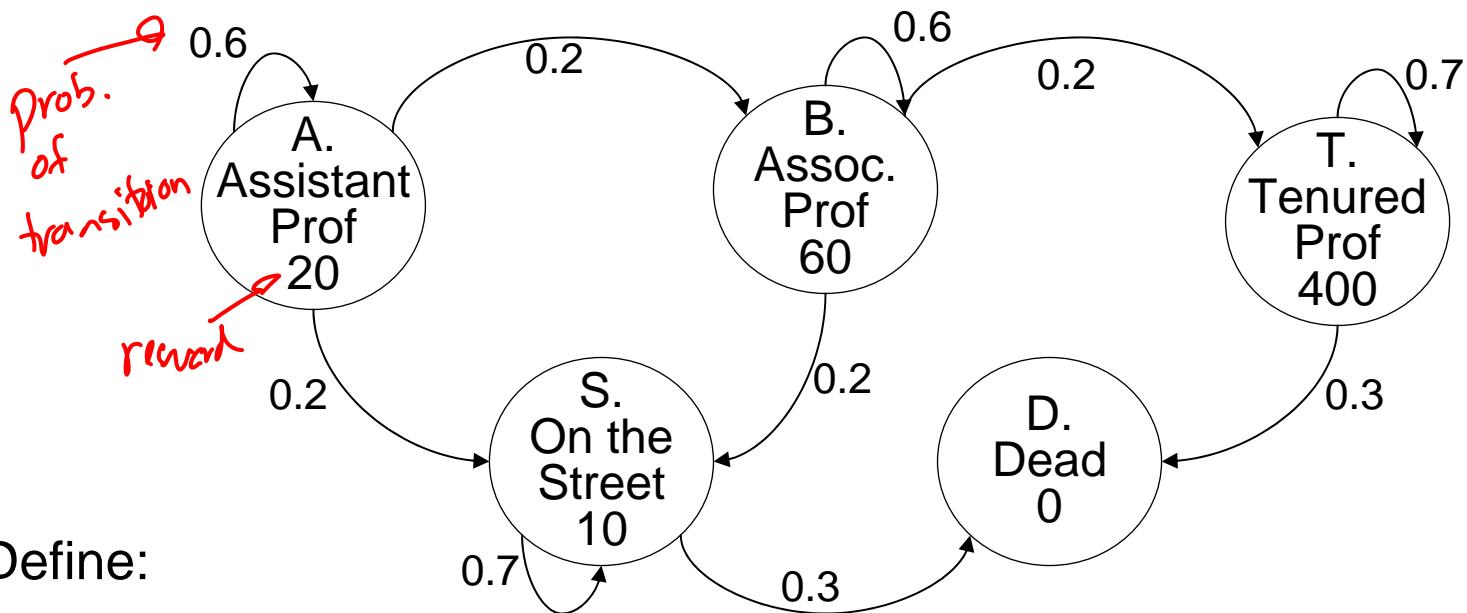
series

$$= \frac{20}{1-\gamma} = \frac{20}{1-0.9} = 200$$

The Academic Life

Simple
Markov Chain

Assume Discount
Factor $\gamma = 0.9$



Define:

V_A = Expected discounted future rewards starting in state A

V_B = Expected discounted future rewards starting in state B

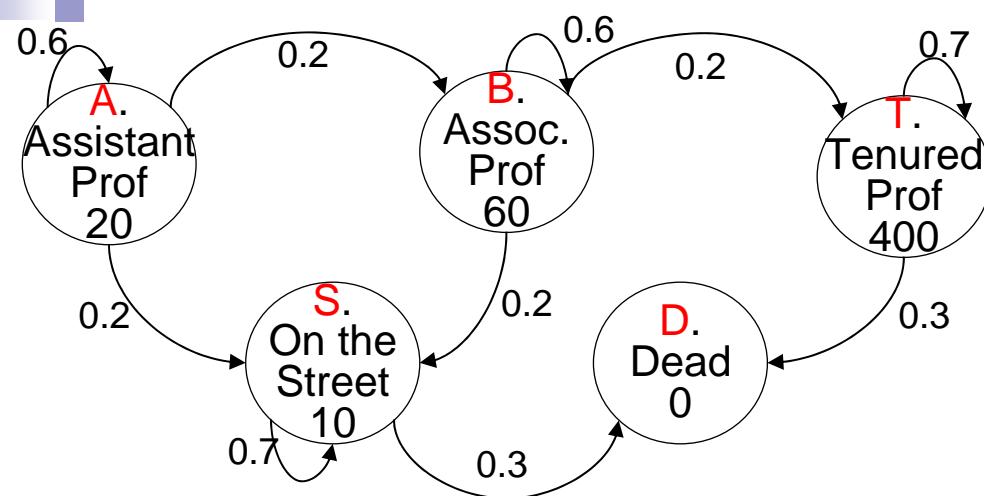
V_T = " " " " " " " " T

V_S = " " " " " " " " S

V_D = " " " " " " " " D

How do we compute V_A , V_B , V_T , V_S , V_D ?

Computing the Future Rewards of an Academic



Assume Discount Factor $\gamma = 0.9$

$$V_B = 60 + \gamma [0.6 V_B + 0.2 V_T + 0.2 V_S]$$

$$V_S = 10 + \gamma [0.7 V_S + 0.3 V_D]$$

$$\begin{aligned}
 V_D &= 0 \\
 V_T &= 400 + \gamma [0.3 \cdot V_D + 0.7 V_T] \\
 V_T &= \frac{400}{1 - 0.7\gamma}
 \end{aligned}$$

↓
 first year
 ↓
 second year

Joint Decision Space

Markov Decision Process (MDP) Representation:

- State space:

- Joint state x of entire system

- Action space:

- Joint action $a = \{a_1, \dots, a_n\}$ for all agents

- Reward function:

- Total reward $R(x, a)$

- sometimes reward can depend on action

- Transition model:

- Dynamics of the entire system $P(x'|x, a)$

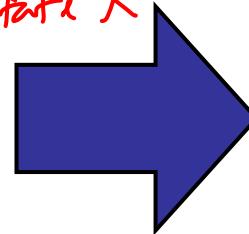
$$R(x, a) = \begin{pmatrix} \vdots \\ x \cdot a \\ \vdots \\ 9.8 \\ -1000 \\ \vdots \end{pmatrix}$$
$$P(x'|x, a) = \begin{pmatrix} \vdots \\ x' \\ \vdots \end{pmatrix}$$
$$P(x'|x, a)$$

Policy

$$\pi: X \rightarrow A$$

Policy: $\pi(x) = a$

policy
at state x



At state x ,
action a for all
agents

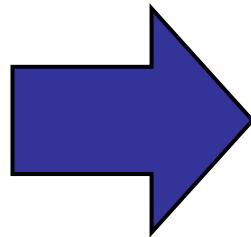
$\pi(x_0)$ = both peasants get wood

$\pi(x_1)$ = one peasant builds
barrack, other gets gold

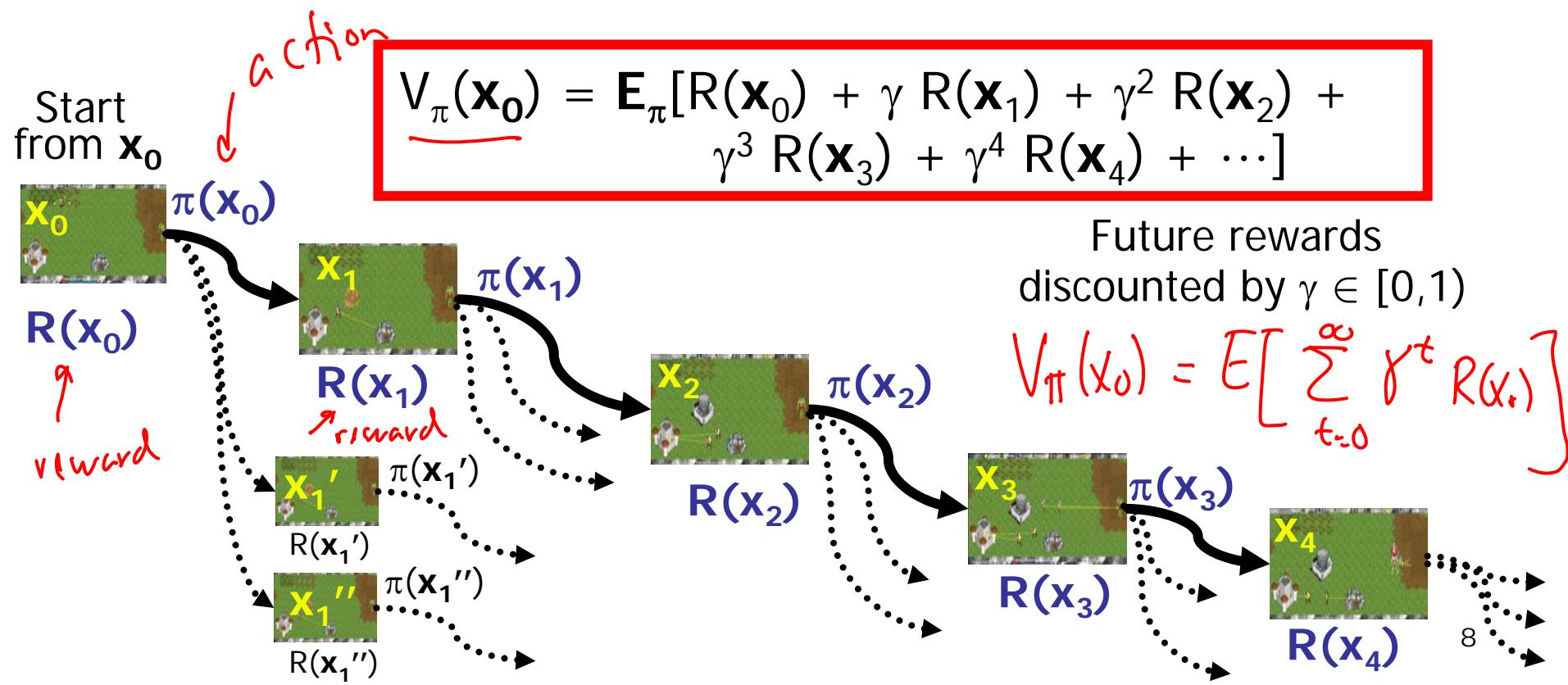
$\pi(x_2)$ = peasants get gold,
footmen attack

Value of Policy

Value: $V_\pi(x)$



Expected long-term reward starting from x



Computing the value of a policy

$$V_\pi(\mathbf{x}_0) = E_\pi[R(\mathbf{x}_0) + \gamma R(\mathbf{x}_1) + \gamma^2 R(\mathbf{x}_2) + \gamma^3 R(\mathbf{x}_3) + \gamma^4 R(\mathbf{x}_4) + \dots]$$

- Discounted value of a state:
□ value of starting from \mathbf{x}_0 and continuing with policy π from then on

$$\begin{aligned} V_\pi(\mathbf{x}_0) &= E_\pi[R(\mathbf{x}_0) + \gamma R(\mathbf{x}_1) + \gamma^2 R(\mathbf{x}_2) + \gamma^3 R(\mathbf{x}_3) + \dots] \\ &= E_\pi\left[\sum_{t=0}^{\infty} \gamma^t R(\mathbf{x}_t)\right] \end{aligned}$$

linearity of expectations:
 $E[A+B] = E[A] + E[B]$

- A recursion!

$$V_\pi(\mathbf{x}_0) = \overbrace{R(\mathbf{x}_0)}^{\rightarrow R(\mathbf{x}_0)} + E_\pi[R(\mathbf{x}_1) + \gamma^2 R(\mathbf{x}_2) + \gamma^3 R(\mathbf{x}_3) + \dots]$$

$$V_\pi(\mathbf{x}_0) = R(\mathbf{x}_0) + \gamma \underbrace{E_\pi[R(\mathbf{x}_1) + \gamma R(\mathbf{x}_2) + \gamma^2 R(\mathbf{x}_3) + \dots]}_{V_\pi(\mathbf{x}_1)}$$

e.g. associate prof.

$$V_\pi(\mathbf{x}_0) = R(\mathbf{x}_0) + \gamma E_\pi[V_\pi(\mathbf{x}_1)]$$

$$V_\pi(\mathbf{x}_1)$$

$$= R(\mathbf{x}_0) + \gamma \sum_{\mathbf{x}_1} P(\mathbf{x}_1 | \mathbf{x}_0, \hat{\pi}(\mathbf{x}_0)) V_\pi(\mathbf{x}_1)$$

Associate, tenured, fired

Computing the value of a policy 1 – the matrix inversion approach

$$V_\pi(x) = R(x) + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V_\pi(x')$$

- Solve by simple matrix inversion:

$$V_\pi = R + \gamma P_\pi V_\pi$$

$$(I - \gamma P_\pi) V_\pi = R$$

$$V_\pi = (I - \gamma P_\pi)^{-1} R$$

$$V_\pi = |X| \begin{pmatrix} V_\pi(x) \\ \vdots \\ V_\pi(x) \end{pmatrix}$$

*if x
setting:
give me π
 I give you V_π*

$$R = |X| \begin{pmatrix} 9.8 \\ -100 \end{pmatrix}$$

$$P(x'|x, \pi(x))$$

$$P_\pi = |X| \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$$

$|X| \leftarrow$ size of X
states

Computing the value of a policy 2 – iteratively *(Value Iteration)*

$$V_\pi(x) = R(x) + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V_\pi(x')$$

- If you have 1000,000 states, inverting a 1000,000x1000,000 matrix is hard!
- Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)

□ Start with some guess V_0

typically

$$V_0 = R$$

t_2

$t=1$

$t=0$

□ Iteratively say:

■ $V_{t+1} = R + \gamma P_\pi V_t$

□ Stop when $\|V_{t+1} - V_t\|_\infty \leq \varepsilon$

■ means that $\|V_\pi - V_{t+1}\|_\infty \leq \varepsilon / (1 - \gamma)$

reward =

$$R + \gamma P_\pi (R + \gamma P_\pi R)$$

$$\|V\|_\infty = \max_x |V(x)|$$

$$V_2$$

$$V_1$$

$$V_0$$

value

But we want to learn a Policy

- So far, told you how good a policy is...

- But how can we choose the best policy???

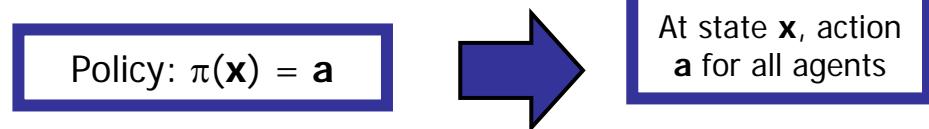
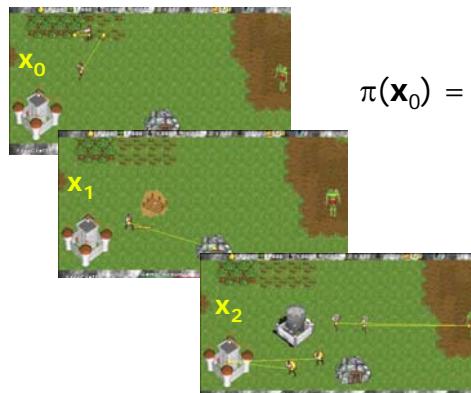
- Suppose there was only one time step:

- world is about to end!!!
- select action that maximizes reward!

at state x

choose

$$\pi(x) = \arg \max_a R(x, a)$$



$\pi(x_0)$ = both peasants get wood

$\pi(x_1)$ = one peasant builds barrack, other gets gold

$\pi(x_2)$ = peasants get gold, footmen attack

Greedy is optimal

most immediate reward

Another recursion!

■ Two time steps: address tradeoff

- good reward now
- better reward in the future

$$V(x_{t=0}) = \max_a R(x_{t=0}, a)$$

a_1 state at $t=1$ lots of reward $t=0$ count down to end of the world takes you to a bad state

a_2 a little here \rightarrow but awesome state later!

$$\pi(x_{t=1}) = \operatorname{argmax}_a R(x_{t=1}, a) + \gamma \sum_{x_{t=0}} p(x_{t=0} | x_{t=1}, a) V(x_{t=0})$$

Unrolling the recursion

World never ends

- Choose actions that lead to best value in the long run

$\underbrace{\text{Optimal value at state } x_0}_{\square}$ Optimal value policy achieves optimal value V^*

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1, a_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2, a_2) + \gamma^3 \dots]]$$

$V^*(x_1)$

$$V^*(x_0) = \max_a R(x_0, a) + \gamma E_a [V^*(x_1)]$$

$$V^*(x_0) = \max_a R(x_0, a) + \gamma \sum_{x_1} p(x_1 | x_0, a) V^*(x_1)$$

Bellman equation

[Bellman 60]

- Evaluating policy π :

$$V_{\pi}(x) = \underbrace{R(x)}_{-} + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V_{\pi}(x')$$

according to policy

- Computing the optimal value V^* - Bellman equation

$$V^*(x) = \max_a \left[R(x, a) + \gamma \sum_{x'} P(x' | x, a) V^*(x') \right]$$

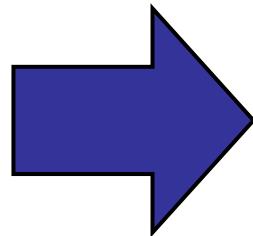
Value at x max actions immediate reward discounted expected ~~value~~ value of next state

* ~~where you always~~ very important

Know where you are !!

Optimal Long-term Plan

Optimal value function $V^*(\mathbf{x})$



Optimal Policy: $\pi^*(\mathbf{x})$

$$Q^*(\mathbf{x}, \mathbf{a}) = R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

↑
Q-function

Optimal policy:

$$\pi^*(\mathbf{x}) = \arg \max_{\mathbf{a}} Q^*(\mathbf{x}, \mathbf{a})$$

$$\pi^*(\mathbf{x}) = \arg \max_{\mathbf{a}}$$

$$R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

is the greedy policy w.r.t. V^* !

Interesting fact – Unique value

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Slightly surprising fact: There is only one V^* that solves Bellman equation!
 - there may be many optimal policies that achieve V^*
- Surprising fact: optimal policies are good everywhere!!!

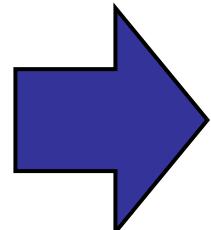
$$V_{\pi^*}(x) \geq V_{\pi}(x), \quad \forall x, \quad \forall \pi$$

↑
value of
optimal policy

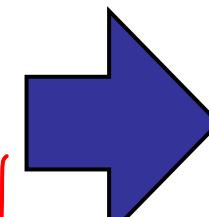
↑ no worse than all
other policies !!

Solving an MDP

Solve
Bellman
equation



Optimal
value $V^*(\mathbf{x})$



Optimal
policy $\pi^*(\mathbf{x})$

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]
- ...

Value iteration (a.k.a. dynamic programming) – the simplest of all

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Start with some guess V_0 e.g., $V_0^{(x)} = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a})$
- Iteratively say:
 - $V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$
↑ immediate reward ↑ discounted one step
- Stop when $\|V_{t+1} - V_t\|_\infty \leq \varepsilon$
 - means that $\|V^* - V_{t+1}\|_\infty \leq \varepsilon/(1-\gamma)$

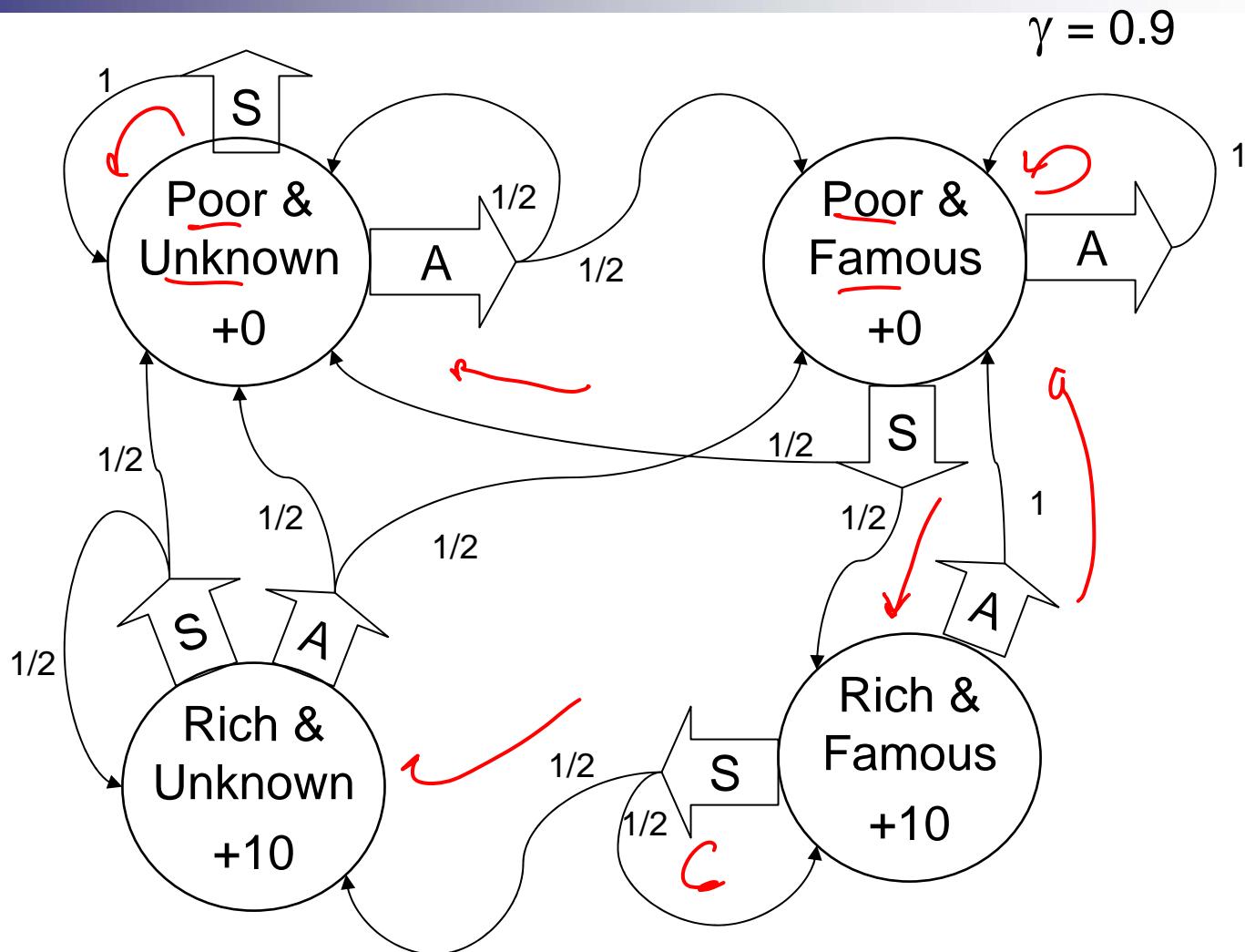
$$t=1 \qquad t=0$$

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}') \quad \text{↑ } V_0 \text{ greedy}$$

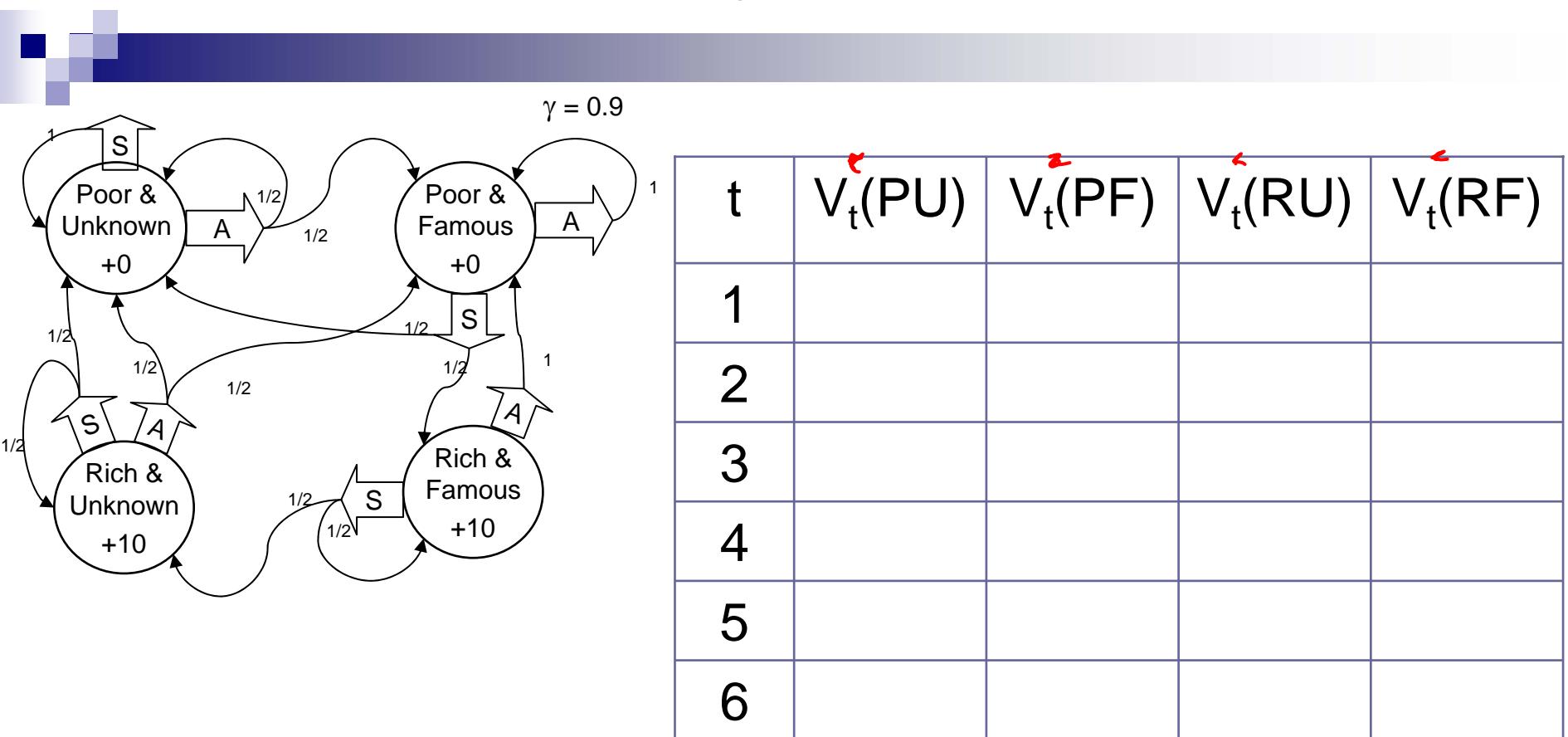
A simple example

You run a startup company.

In every state you must choose between Saving money or Advertising.



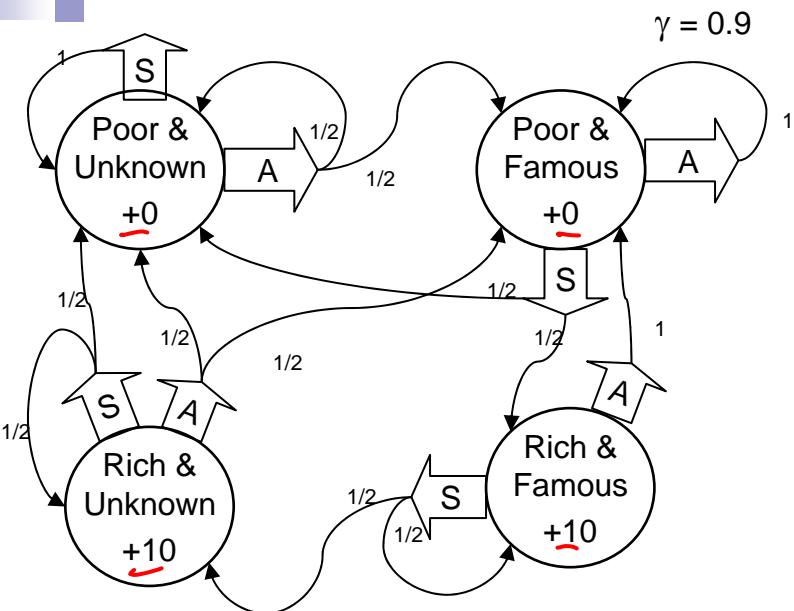
Let's compute $V_t(x)$ for our example



$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

Value iteration

Let's compute $V_t(x)$ for our example



$$\text{e.g., } q(x,a) = r(x) + \gamma c(a)$$

↓
 reward
 ↓ at state x
 ↓
 cost
 of action

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

t	$V_t(\text{PU})$	$V_t(\text{PF})$	$V_t(\text{RU})$	$V_t(\text{RF})$
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	6.53	25.08	18.55
4	3.852	12.20	29.63	19.26
5	7.22	15.07	32.00	20.40
6	10.03	17.65	33.58	22.43

RF? \hookrightarrow RU?

Policy iteration – Another approach for computing π^*

- Start with some guess for a policy π_0 \rightarrow e.g. $\pi_0(x) = \arg \max_a R(x, a)$
- Iteratively say:
 - evaluate policy: $V_t(x) = R(x, a = \pi_t(x)) + \gamma \sum_{x'} P(x'|x, a = \pi_t(x))V_t(x')$
 - improve policy: $\pi_{t+1}(x) = \arg \max_a R(x, a) + \gamma \sum_{x'} P(x'|x, a) \underline{V_t(x')}$
- Stop when
 - policy stops changing
 - usually happens in about 10 iterations
 - or $\|V_{t+1} - V_t\|_\infty \leq \varepsilon$
 - means that $\|V^* - V_{t+1}\|_\infty \leq \varepsilon/(1-\gamma)$

Open problem:

how long \rightarrow will policy iteration take?

polynomial?

I think largest known

lower bound is

$\mathcal{O}(n)$ $n \rightarrow$ num. states

Policy Iteration & Value Iteration: Which is best ???

It depends.

Lots of actions? Choose **Policy Iteration**

Already got a fair policy? **Policy Iteration**

Few actions, acyclic? **Value Iteration**
even here PI

Best of Both Worlds:

Modified Policy Iteration [Puterman]

...a simple mix of value iteration and policy iteration

*use iterative approach instead of matrix
inversion to evaluate a policy,*

3rd Approach

Linear Programming

LP Solution to MDP

[Manne '60]

Value computed by linear programming:

$$\text{minimize: } \sum V(\mathbf{x})$$

variables in LP are
 $V(\mathbf{x})$ [n variables

$$V(\mathbf{x}) = \max_a R(\mathbf{x}, a) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, a) V(\mathbf{x}')$$

$$\text{subject to: } \begin{cases} V(\mathbf{x}) \geq R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V(\mathbf{x}') \\ \forall \mathbf{x}, \mathbf{a} \end{cases}$$

gets you V^*

- One variable $V(\mathbf{x})$ for each state
- One constraint for each state \mathbf{x} and action \mathbf{a}
- **Polynomial time solution**

Vars & Constraints are polynomial in input
 \Rightarrow MDPs are in P

What you need to know

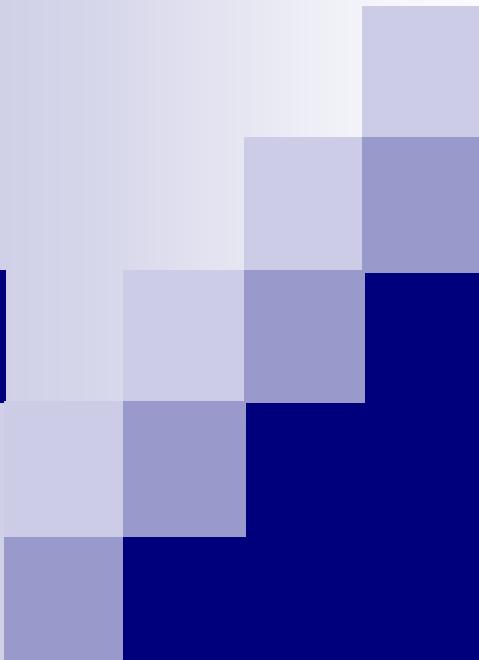
- What's a Markov decision process
 - state, actions, transitions, rewards
 - a policy
 - value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - Bellman equation
- Solving Bellman equation
 - with value iteration, policy iteration and linear programming

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - <http://www.cs.cmu.edu/~awm/tutorials>

Reading:

Kaelbling et al. 1996 (see class website)



Reinforcement Learning

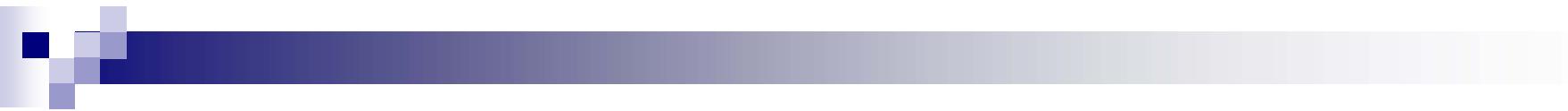
Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

May 1st, 2006

The Reinforcement Learning task



World: You are in state 34.

Your immediate reward is 3. You have possible 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I'll take action 1.

World: You're in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - in some versions of the problem size of X and A unknown
- Interact with world at each time step t :
 - world gives state x_t and reward r_t
 - you give next action a_t

$\langle x_0, r_0, a_0 \rangle$
 $\langle x_1, r_1, a_1 \rangle$
 $\langle x_2, r_2, a_2 \rangle$
⋮
- **Goal:** (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

The “Credit Assignment” Problem

I'm in state 43, reward = 0, action = 2

“ “ “ 39, “ = 0, “ = 4

“ “ “ 22, “ = 0, “ = 1

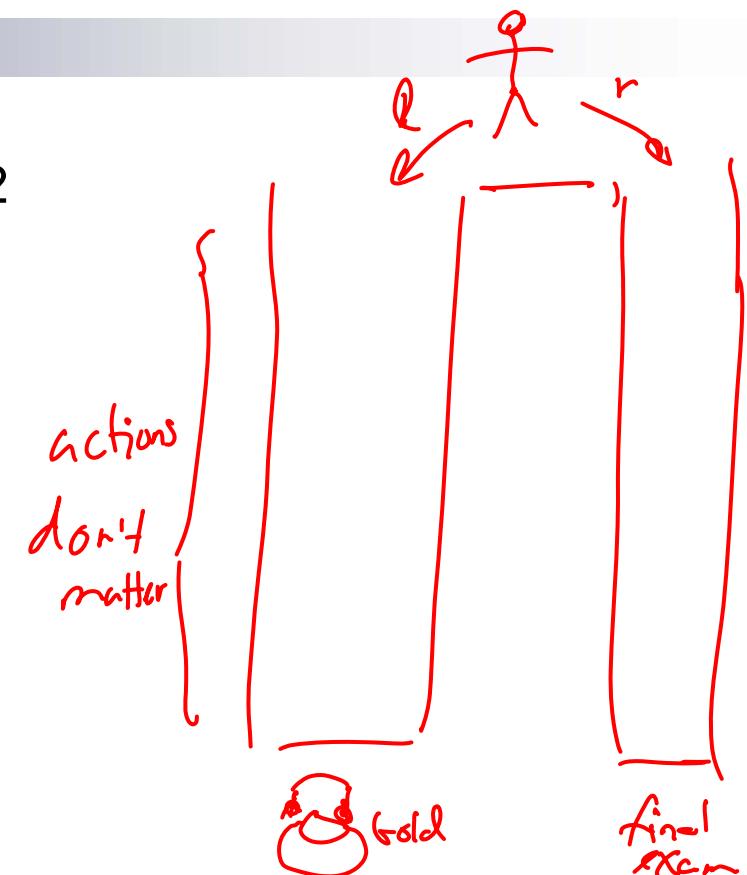
“ “ “ 21, “ = 0, “ = 1

“ “ “ 21, “ = 0, “ = 1

“ “ “ 13, “ = 0, “ = 2

“ “ “ 54, “ = 0, “ = 2

“ “ “ 26, “ = 100,



Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??

This is the **Credit Assignment** problem.

$P(X'|X, a)$ is
unkown

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - is this the best I can hope for???
- **Exploitation:** should I stick with what I know and find a good policy w.r.t. this knowledge?
 - at the risk of missing out on some large reward somewhere
- **Exploration:** should I look for a region with more reward?
 - at the risk of wasting my time or collecting a lot of negative reward



Two main reinforcement learning approaches

■ Model-based approaches:

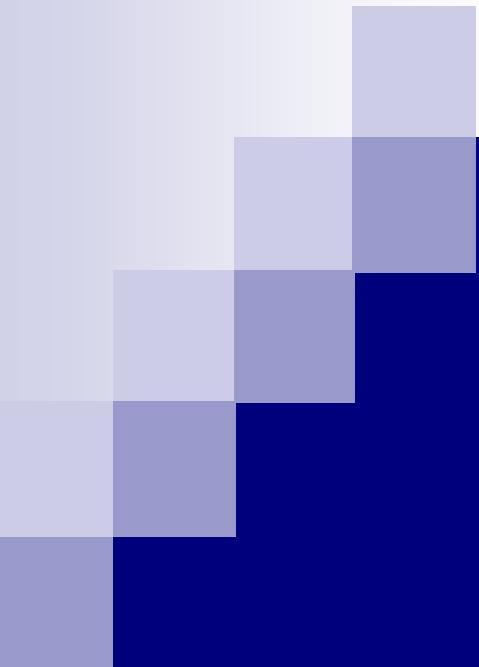
- explore environment → learn model ($P(x'|x,a)$ and $R(x,a)$)
(almost) everywhere
- use model to plan policy, MDP-style
- approach leads to strongest theoretical results
- works quite well in practice when state space is manageable

■ Model-free approach:

v^*

π^*

- don't learn a model → learn value function or policy directly
- leads to weaker theoretical results
- often works well when state space is large



Brafman & Tennenholtz 2002
(see class website)

Rmax – A model-based approach

Given a dataset – learn model

Given data, learn (MDP) Representation:

- Dataset:
- Learn reward function:
 - $R(x, a)$
- Learn transition model:
 - $P(x'|x, a)$

Some challenges in model-based RL 1: Planning with insufficient information

- Model-based approach:
 - estimate $R(x, a)$ & $P(x'|x, a)$
 - obtain policy by value or policy iteration, or linear programming
 - No credit assignment problem → learning model, planning algorithm takes care of “assigning” credit
- What do you plug in when you don’t have enough information about a state?
 - don’t reward at a particular state
 - plug in smallest reward (R_{\min})?
 - plug in largest reward (R_{\max})?
 - don’t know a particular transition probability?

Some challenges in model-based RL 2: Exploration-Exploitation tradeoff

- A state may be very hard to reach
 - waste a lot of time trying to learn rewards and transitions for this state
 - after a much effort, state may be useless
- A strong advantage of a model-based approach:
 - you know which states estimate for rewards and transitions are bad
 - can (try) to plan to reach these states
 - have a good estimate of how long it takes to get there

A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]

■ **Optimism in the face of uncertainty!!!!**

- heuristic shown to be useful long before theory was done (e.g., Kaelbling '90)

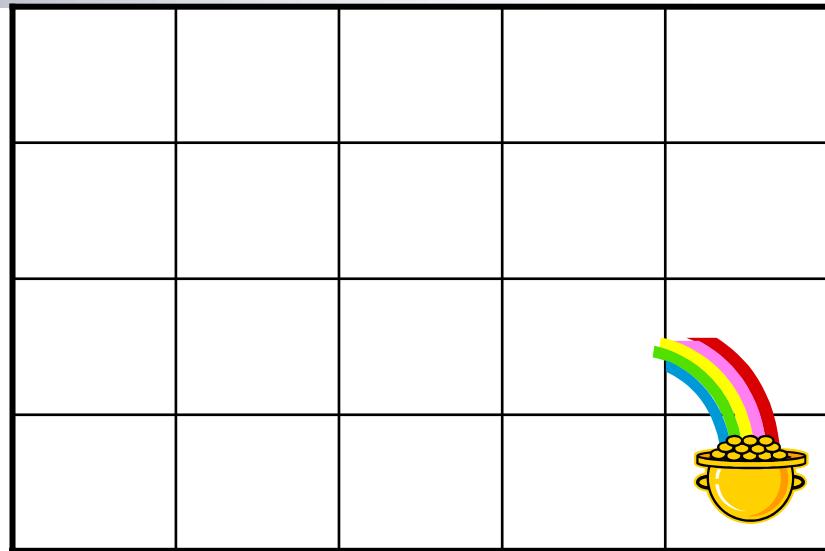
■ If you don't know reward for a particular state-action pair, set it to R_{\max} !!!

■ If you don't know the transition probabilities $P(x'|x,a)$ from some state action pair x,a assume you go to a **magic, fairytale** new state x_0 !!!

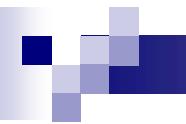
- $R(x_0,a) = R_{\max}$
- $P(x_0|x_0,a) = 1$

Understanding R_{\max}

- With R_{\max} you either:
 - **explore** – visit a state-action pair you don't know much about
 - because it seems to have lots of potential
 - **exploit** – spend all your time on known states
 - even if unknown states were amazingly good, it's not worth it
- Note: you never know if you are exploring or exploiting!!!



Implicit Exploration-Exploitation Lemma



- **Lemma:** every T time steps, either:
 - **Exploits:** achieves near-optimal reward for these T -steps, or
 - **Explores:** with high probability, the agent visits an unknown state-action pair
 - learns a little about an unknown state
- T is related to *mixing time* of Markov chain defined by MDP
 - time it takes to (approximately) forget where you started

The Rmax algorithm

- **Initialization:**
 - Add state x_0 to MDP
 - $R(x,a) = R_{\max}, \forall x,a$
 - $P(x_0|x,a) = 1, \forall x,a$
 - all states (except for x_0) are **unknown**
- **Repeat**
 - obtain policy for current MDP and Execute policy
 - for any visited state-action pair, set reward function to appropriate value
 - if visited some state-action pair x,a enough times to estimate $P(x'|x,a)$
 - update transition probs. $P(x'|x,a)$ for x,a using MLE
 - recompute policy

Visit enough times to estimate $P(x'|x,a)$?

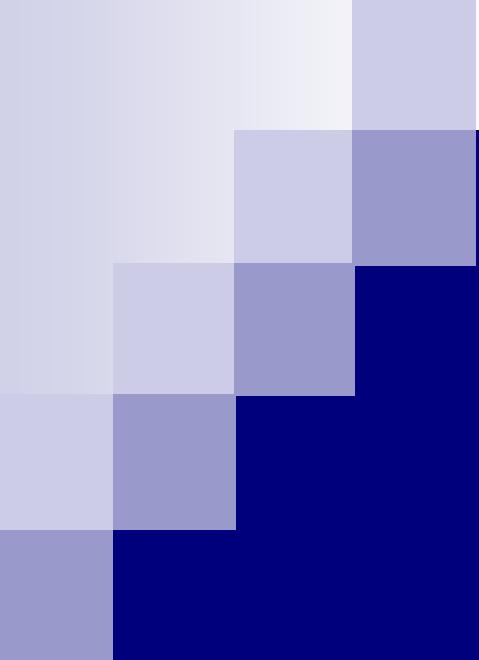
- How many times are enough?
 - use Chernoff Bound!
- **Chernoff Bound:**
 - X_1, \dots, X_n are i.i.d. Bernoulli trials with prob. θ
 - $P(|1/n \sum_i X_i - \theta| > \varepsilon) \leq \exp\{-2n\varepsilon^2\}$

Putting it all together

- **Theorem:** With prob. at least $1-\delta$, Rmax will reach a ε -optimal policy in time polynomial in: num. states, num. actions, T , $1/\varepsilon$, $1/\delta$
 - Every T steps:
 - achieve near optimal reward (great!), or
 - visit an unknown state-action pair → num. states and actions is finite, so can't take too long before all states are known

Problems with model-based approach

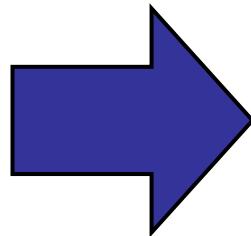
- If state space is large
 - transition matrix is very large!
 - requires many visits to declare a state as known
- Hard to do “approximate” learning with large state spaces
 - some options exist, though



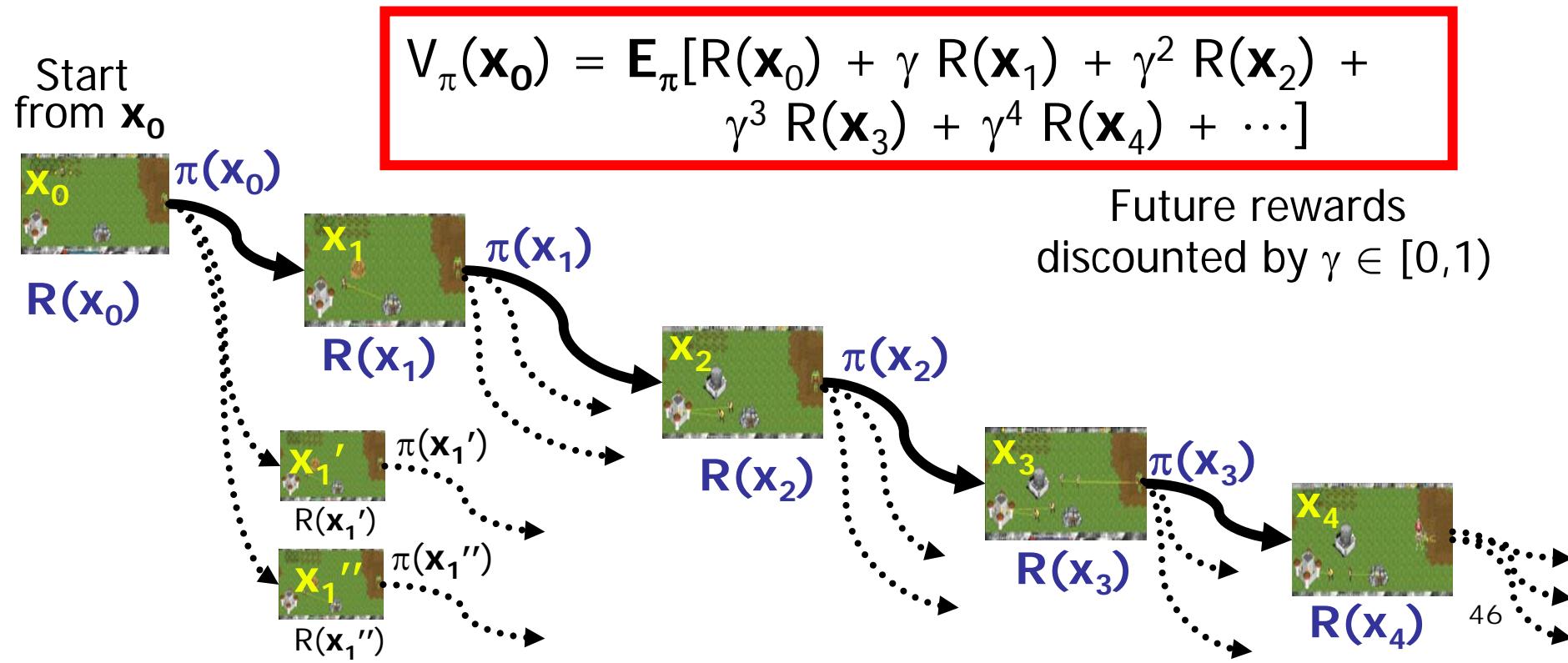
TD-Learning and Q-learning – Model- free approaches

Value of Policy

Value: $V_\pi(x)$



Expected long-term reward starting from x



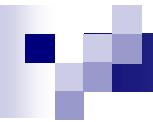
A simple monte-carlo policy evaluation

- Estimate $V(x)$, start several trajectories from $x \rightarrow V(x)$ is average reward from these trajectories
 - Hoeffding's inequality tells you how many you need
 - discounted reward \rightarrow don't have to run each trajectory forever to get reward estimate

Problems with monte-carlo approach

- **Resets**: assumes you can restart process from same state many times
- **Wasteful**: same trajectory can be used to estimate many states

Reusing trajectories



- Value determination:

$$V_\pi(x) = R(x) + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V_\pi(x')$$

- Expressed as an expectation over next states:

$$V_\pi(x) = R(x) + \gamma E \left[V_\pi(x') | x, a = \pi(x) \right]$$

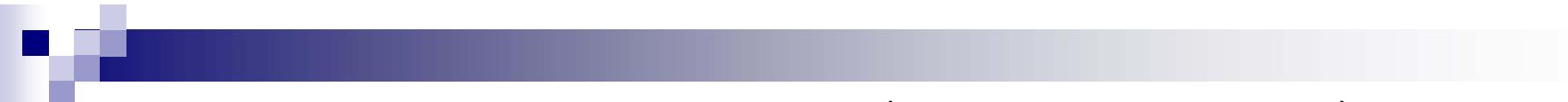
- Initialize value function (zeros, at random,...)
- Idea 1: Observe a transition: $x_t \rightarrow x_{t+1}, r_{t+1}$, approximate expec. with single sample:

- unbiased!!
- but a very bad estimate!!!

Simple fix: Temporal Difference (TD) Learning

- Idea 2: Observe a transition: $x_t \rightarrow x_{t+1}, r_{t+1}$, approximate expec. by mixture of new sample with old estimate:
 - $\alpha > 0$ is learning rate

TD converges (can take a long time!!!)


$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V_{\pi}(x')$$

- **Theorem:** TD converges in the limit (with prob. 1), if:
 - every state is visited infinitely often
 - Learning rate decays just so:
 - $\sum_{i=1}^{\infty} \alpha_i = \infty$
 - $\sum_{i=1}^{\infty} \alpha_i^2 < \infty$