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SVMs, Duality and the 

Kernel Trick (cont.)

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 1st, 2006

Two SVM tutorials linked in class website 
(please, read both):
� High-level presentation with applications (Hearst 1998)

� Detailed tutorial (Burges 1998)
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SVMs reminder
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Today’s lecture

� Learn one of the most interesting and exciting 

recent advancements in machine learning

� The “kernel trick”

� High dimensional feature spaces at no extra cost!

� But first, a detour

� Constrained optimization!
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Dual SVM interpretation
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Dual SVM formulation –

the linearly separable case
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Reminder from last time: What if the 

data is not linearly separable?

Use features of features 
of features of features….

Feature space can get really large really quickly!
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Higher order polynomials

number of input dimensions
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m – input features

d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms
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Dual formulation only depends on 

dot-products, not on w!
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Finally: the “kernel trick”!

� Never represent features explicitly

� Compute dot products in closed form

� Constant-time high-dimensional dot-
products for many classes of features

� Very interesting theory – Reproducing 
Kernel Hilbert Spaces

� Not covered in detail in 10701/15781, 
more in 10702
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Common kernels

� Polynomials of degree d

� Polynomials of degree up to d

� Gaussian kernels

� Sigmoid
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Overfitting?

� Huge feature space with kernels, what about 

overfitting???

� Maximizing margin leads to sparse set of support 

vectors 

� Some interesting theory says that SVMs search for 

simple hypothesis with large margin

� Often robust to overfitting
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What about at classification time

� For a new input x, if we need to represent Φ(x), 
we are in trouble!

� Recall classifier: sign(w.Φ(x)+b)

� Using kernels we are cool!
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SVMs with kernels

� Choose a set of features and kernel function

� Solve dual problem to obtain support vectors αi

� At classification time, compute:

Classify as
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Remember kernel regression

Remember kernel regression???

1. wi = exp(-D(xi, query)2 / Kw
2)

2. How to fit with the local points?

Predict the weighted average of the outputs:

predict = Σwiyi / Σwi
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SVMs v. Kernel Regression

SVMs Kernel Regression

or
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SVMs v. Kernel Regression

SVMs Kernel Regression

or

Differences:

� SVMs:
� Learn weights \alpha_i (and bandwidth)

� Often sparse solution

� KR:
� Fixed “weights”, learn bandwidth

� Solution may not be sparse

� Much simpler to implement
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What’s the difference between 

SVMs and Logistic Regression?

High dimensional 
features with 
kernels

Loss function

NoYes!

Log-lossHinge loss

Logistic

Regression

SVMs
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Kernels in logistic regression

� Define weights in terms of support vectors:

� Derive simple gradient descent rule on αi
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What’s the difference between SVMs

and Logistic Regression? (Revisited)

Almost always no!Often yes!Solution sparse

Yes!Yes!High dimensional 
features with 
kernels

Real probabilities“margin”Semantics of 
output

Loss function Log-lossHinge loss

Logistic

Regression

SVMs
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What you need to know

� Dual SVM formulation

� How it’s derived

� The kernel trick

� Derive polynomial kernel

� Common kernels

� Kernelized logistic regression

� Differences between SVMs and logistic regression
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Acknowledgment

� SVM applet:

� http://www.site.uottawa.ca/~gcaron/applets.htm
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PAC-learning, VC 

Dimension and 

Margin-based Bounds

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 1st, 2005

More details:
General: http://www.learning-with-kernels.org/

Example of more complex bounds:

http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz
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What now…

� We have explored many ways of learning from 

data

� But…

� How good is our classifier, really?

� How much data do I need to make it “good enough”?
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A simple setting…

� Classification

� m data points

� Finite number of possible hypothesis (e.g., dec. trees 

of depth d)

� A learner finds a hypothesis h that is consistent

with training data

� Gets zero error in training – errortrain(h) = 0

� What is the probability that h has more than ε
true error?

� errortrue(h) ≥ ε
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How likely is a bad hypothesis to 

get m data points right?

� Hypothesis h that is consistent with training data →

got m i.i.d. points right

� Prob. h with errortrue(h) ≥ ε gets one data point right

� Prob. h with errortrue(h) ≥ ε gets m data points right



2006 Carlos Guestrin 26

But there are many possible hypothesis 

that are consistent with training data
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How likely is learner to pick a bad 

hypothesis

� Prob. h with errortrue(h) ≥ ε gets m data points right

� There are k hypothesis consistent with data

� How likely is learner to pick a bad one?
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Union bound

� P(A or B or C or D or …)
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How likely is learner to pick a bad 

hypothesis

� Prob. h with errortrue(h) ≥ ε gets m data points right

� There are k hypothesis consistent with data

� How likely is learner to pick a bad one?
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Review: Generalization error in 

finite hypothesis spaces [Haussler ’88]

� Theorem: Hypothesis space H finite, dataset D

with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:
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Using a PAC bound

� Typically, 2 use cases:

� 1: Pick ε and δ, give you m

� 2: Pick m and δ, give you ε
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Review: Generalization error in 

finite hypothesis spaces [Haussler ’88]

� Theorem: Hypothesis space H finite, dataset D

with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound

� Consistent classifier

� Size of hypothesis space
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What if our classifier does not have 

zero error on the training data?

� A learner with zero training errors may make 

mistakes in test set

� What about a learner with errortrain(h) in training set? 
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Simpler question: What’s the 

expected error of a hypothesis?

� The error of a hypothesis is like estimating the 

parameter of a coin!

� Chernoff bound: for m i.d.d. coin flips, x1,…,xm, 
where xi ∈ {0,1}. For 0<ε<1:
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Using Chernoff bound to estimate 

error of a single hypothesis
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But we are comparing many 

hypothesis: Union bound

For each hypothesis hi:

What if I am comparing two hypothesis, h1 and h2?
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Generalization bound for |H| 

hypothesis

� Theorem: Hypothesis space H finite, dataset D

with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h:
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PAC bound and Bias-Variance 

tradeoff 

� Important: PAC bound holds for all h, 

but doesn’t guarantee that algorithm finds best h!!!

or, after moving some terms around,
with probability at least 1-δδδδ::::
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What about the size of the 

hypothesis space?

� How large is the hypothesis space?
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Boolean formulas with n binary features



2006 Carlos Guestrin 42

Number of decision trees of depth k

Recursive solution 

Given n attributes

Hk = Number of decision trees of depth k

H0 =2

Hk+1 = (#choices of root attribute) *

(# possible left subtrees) *

(# possible right subtrees)

= n * Hk * Hk

Write Lk = log2 Hk

L0 = 1

Lk+1 = log2 n + 2Lk

So Lk = (2k-1)(1+log2 n) +1
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PAC bound for decision trees of 

depth k

� Bad!!!

� Number of points is exponential in depth!

� But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
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Number of decision trees with k leaves

Hk = Number of decision trees with k leaves

H0 =2

Loose bound: Reminder:
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PAC bound for decision trees with k 

leaves – Bias-Variance revisited
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What did we learn from decision trees?

� Bias-Variance tradeoff formalized

� Moral of the story:

Complexity of learning not measured in terms of 

size hypothesis space, but in maximum number of 

points that allows consistent classification

� Complexity m – no bias, lots of variance

� Lower than m – some bias, less variance
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What about continuous hypothesis 

spaces?

� Continuous hypothesis space: 

� |H| = ∞

� Infinite variance???

� As with decision trees, only care about the 

maximum number of points that can be 
classified exactly!
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How many points can a linear 

boundary classify exactly? (1-D)
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How many points can a linear 

boundary classify exactly? (2-D)
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How many points can a linear 

boundary classify exactly? (d-D)
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PAC bound using VC dimension

� Number of training points that can be 

classified exactly is VC dimension!!!

� Measures relevant size of hypothesis space, as 
with decision trees with k leaves
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Shattering a set of points
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VC dimension
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Examples of VC dimension

� Linear classifiers: 

� VC(H) = d+1, for d features plus constant term b

� Neural networks

� VC(H) = #parameters

� Local minima means NNs will probably not find best 
parameters

� 1-Nearest neighbor?
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PAC bound for SVMs

� SVMs use a linear classifier

� For d features, VC(H) = d+1:
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VC dimension and SVMs: Problems!!!

� What about kernels?

� Polynomials: num. features grows really fast = Bad bound

� Gaussian kernels can classify any set of points exactly

Doesn’t take margin into account

n – input features
p – degree of polynomial
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Margin-based VC dimension

� H: Class of linear classifiers: w.Φ(x)  (b=0)

� Canonical form: minj |w.Φ(xj)| = 1

� VC(H) = R2 w.w

� Doesn’t depend on number of features!!!

� R2 = maxj Φ(xj).Φ(xj) – magnitude of data

� R2 is bounded even for Gaussian kernels → bounded VC 

dimension

� Large margin, low w.w, low VC dimension – Very cool!
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Applying margin VC to SVMs?

� VC(H) = R2 w.w

� R2 = maxj Φ(xj).Φ(xj) – magnitude of data, doesn’t depend on choice of w

� SVMs minimize w.w

� SVMs minimize VC dimension to get best bound?

� Not quite right: ����

� Bound assumes VC dimension chosen before looking at data

� Would require union bound over infinite number of possible VC 
dimensions…

� But, it can be fixed!
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Structural risk minimization theorem

� For a family of hyperplanes with margin γ>0

� w.w � 1

� SVMs maximize margin γ + hinge loss

� Optimize tradeoff training error (bias) versus margin γ
(variance)
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Reality check – Bounds are loose

� Bound can be very loose, why should you care?

� There are tighter, albeit more complicated, bounds

� Bounds gives us formal guarantees that empirical studies can’t provide

� Bounds give us intuition about complexity of problems and 
convergence rate of algorithms

ε

m (in 105)

d=2000

d=200

d=20

d=2
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What you need to know

� Finite hypothesis space

� Derive results

� Counting number of hypothesis

� Mistakes on Training data

� Complexity of the classifier depends on number of 

points that can be classified exactly

� Finite case – decision trees

� Infinite case – VC dimension

� Bias-Variance tradeoff in learning theory

� Margin-based bound for SVM

� Remember: will your algorithm find best classifier?


