Two SVM tutorials linked in class website

 (please, read both):- High-level presentation with applications (Hearst 1998)
- Detailed tutorial (Burges 1998)

SVMs, Duality and the Kernel Trick (cont.)

Machine Learning - 10701/15781
Carlos Guestrin Carnegie Mellon University

March 1st, 2006

SVMs reminder

Today's lecture

- Learn one of the most interesting and exciting recent advancements in machine learning
\square The "kernel trick"
\square High dimensional feature spaces at no extra cost!
- But first, a detour
\square Constrained optimization!

Dual SVM interpretation

Dual SVM formulation the linearly separable case

obs function dual \rightarrow quadratic \rightarrow dual quadricerogm.

Reminder from last time: What if the data is not linearly separable?

Higher order polynomials

 legree of poly$$
\text { num. terms }=\binom{d+m-1}{d}=\frac{(d+m-1)!}{d!(m-1)!}
$$

Dual formulation only depends on

 dot-products, not on w! only thing is ${ }^{x}$ minimize $_{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathrm{x}_{i} \mathrm{x}_{j}^{2} \quad x_{i} x_{j}=x_{i} \cdot 0_{0} \cdot x_{j}$$$
\begin{aligned}
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { no w! } \\
& \text { use features } \phi(x) \\
& \text { all I need is } \phi\left(x_{j}\right) \cdot \phi\left(x_{i}\right) \\
& K\left(x_{j}, x_{i}\right)=\phi\left(x_{j}\right) \cdot \phi\left(x_{i}\right)
\end{aligned}
$$

$\operatorname{minimize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

$$
\begin{aligned}
& K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right) \\
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{j<2 \geq 00} \geq 0
\end{aligned}
$$

Finally: the "kernel trick"!

$\operatorname{minimize}_{\alpha} \quad \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

$$
\begin{aligned}
& K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)= \\
& \sum_{i} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0
\end{aligned}
$$

- Never represent features explicitly
\square Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) \\
& b=y_{k}-\mathbf{w} \cdot \Phi\left(\mathbf{x}_{k}\right) \\
& \text { for any } k \text { where } C>\alpha_{k}>0
\end{aligned}
$$

- Very interesting theory - Reproducing Kernel Hilbert Spaces
\square Not covered in detail in 10701/15781, more in 10702

Common kernels

- Polynomials of degree d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to $\begin{gathered}\text { inch } \\ d\end{gathered}$

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian kernels

$$
\begin{aligned}
& \text { ussian kernels } \\
& K(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|}{2 \sigma^{2}}\right)
\end{aligned}
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

Overfitting?

- Huge feature space with kernels, what about overfitting???
\square Maximizing margin leads to sparse set of support vectors
\square Some interesting theory says that SVMs search for simple hypothesis with large margin
\square Often robust to overfitting

$$
\begin{aligned}
& \text { sparse solutions } \rightarrow \\
& \text { a few support vectors } \\
& \rightarrow \text { less overfitting }
\end{aligned}
$$

What about at classification time

- For a new input \mathbf{x}, if we need to represent $\Phi(\mathbf{x})$, we are in trouble! if hawh writc w, b, too lavge
- Recall classifier: sign(w. $\Phi(\mathbf{x})+\mathrm{b})$
- Using kernels we are cool!
$K(\mathbf{u}, \mathbf{v})=\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$
$w . \phi(x)=\sum_{i} \alpha_{i} \mu_{i} \underbrace{\phi(x) \cdot \phi\left(x_{i}\right)}_{\begin{array}{c}\text { easy to } \\ \text { compute }\end{array}}$
$\underline{\mathrm{w}}=\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathrm{x}_{i}\right)$
$b=y_{k}-\mathbf{w} \cdot \Phi\left(\mathbf{x}_{k}\right)$
for any k where $C>\alpha_{k}>0$

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_{i}
- At classification time, compute:

Remember kernel regression

Remember kernel regression???

1. $w_{i}=\exp \left(-D\left(x_{i}, q u e r y\right)^{2} / K_{w}{ }^{2}\right)$
2. How to fit with the local points?

Predict the weighted average of the outputs: predict $=\boldsymbol{\Sigma} w_{i} \boldsymbol{y}_{i} / \boldsymbol{\Sigma} \boldsymbol{w}_{\boldsymbol{i}}$

SVMs v. Kernel Regression

SVMs

$$
\underset{\text { or }}{\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{x})+b)}
$$

$\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)$

Kernel Regression

$$
\operatorname{sign}\left(\frac{\sum_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)}{\sum_{j} K\left(\mathbf{x}, \mathbf{x}_{j}\right)}\right)
$$

SVMs v. Kernel Regression

SVMs

$\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathrm{x})+b)$
or

Kernel Regression

$$
\operatorname{sign}\left(\frac{\sum_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)}{\sum_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)}\right)
$$

sign
Differences:

- SVMs:
\square Learn weights \alpha_i (and bandwidth)
\square Often sparse solution
- KR:
\square Fixed "weights", learn bandwidth
\square Solution may not be sparse
\square Much simpler to implement

What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function		
High dimensional features with kernels		

Kernels in logistic regression

$$
P(Y=1 \mid x, \mathbf{w})=\frac{1}{1+e^{-(\mathbf{w} \cdot \Phi(\mathbf{x})+b)}}
$$

- Define weights in terms of support vectors:

$$
\begin{aligned}
\mathbf{w} & =\sum_{i} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) \\
P(Y=1 \mid x, \mathbf{w}) & =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi(\mathbf{x})+b\right)}} \\
& =\frac{1}{1+e^{-\left(\sum_{i} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)}}
\end{aligned}
$$

- Derive simple gradient descent rule on α_{i}

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

What you need to know

- Dual SVM formulation
\square How it's derived
■ The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

Acknowledgment

- SVM applet:
$\square \underline{\text { http://www.site.uottawa.ca/~gcaron/applets.htm }}$

More details:

General: http://www.learning-with-kernels.org/
Example of more complex bounds:
http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz

PAC-learning, VC Dimension and Margin-based Bounds

Machine Learning - 10701/15781
Carlos Guestrin Carnegie Mellon University

March 1st, 2005

What now...

- We have explored many ways of learning from data
- But...
\square How good is our classifier, really?
\square How much data do I need to make it "good enough"?

A simple setting...

- Classification
$\square \mathrm{m}$ data points
\square Finite number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
\square Gets zero error in training - error ${ }_{\text {train }}(h)=0$
- What is the probability that h has more than ε true error?
\square error $_{\text {true }}(h) \geq \varepsilon$

How likely is a bad hypothesis to get m data points right?

- Hypothesis h that is consistent with training data \rightarrow got m i.i.d. points right
- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets one data point right
- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right

But there are many possible hypothesis that are consistent with training data

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
\square How likely is learner to pick a bad one?

Union bound

- $P(A$ or B or C or D or ... $)$

How likely is learner to pick a bad hypothesis

- Prob. h with error $_{\text {true }}(\mathrm{h}) \geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
\square How likely is learner to pick a bad one?

Review: Generalization error in finite hypothesis spaces [Haussler '88]

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h that is consistent on the training data:

$$
P\left(\operatorname{error}_{\mathcal{X}}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}
$$

Using a PAC bound

- Typically, 2 use cases: $\quad P\left(\operatorname{error}_{\mathcal{X}}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}$
$\square 1$: Pick ε and δ, give you m
\square 2: Pick m and δ, give you ε

Review: Generalization error in finite hypothesis spaces [Haussler '88]

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h that is consistent on the training data:

$$
P\left(\operatorname{error}_{\mathcal{X}}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}
$$

Even if h makes zero errors in training data, may make errors in test

Limitations of Haussler '88 bound

- Consistent classifier $\quad P\left(\operatorname{error}_{\mathcal{X}}(h)>\epsilon\right) \leq|H| e^{-m \epsilon}$
- Size of hypothesis space

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error $_{\text {train }}(h)$ in training set?

Simpler question: What's the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of a coin!
- Chernoff bound: for m i.d.d. coin flips, $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$, where $x_{i} \in\{0,1\}$. For $0<\varepsilon<1$:

$$
P\left(\theta-\frac{1}{m} \sum_{i} x_{i}>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

Using Chernoff bound to estimate error of a single hypothesis

$$
P\left(\theta-\frac{1}{m} \sum_{i} x_{i}>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

But we are comparing many hypothesis: Union bound

For each hypothesis h_{i} :

$$
P\left(\text { error }_{\text {true }}\left(h_{i}\right)-\text { error }_{\text {train }}\left(h_{i}\right)>\epsilon\right) \leq e^{-2 m \epsilon^{2}}
$$

What if I am comparing two hypothesis, h_{1} and h_{2} ?

Generalization bound for $|\mathrm{H}|$ hypothesis

- Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0<\varepsilon<1$: for any learned hypothesis h :
$P\left(\operatorname{error}_{t r u e}(h)-\operatorname{error}_{t r a i n}(h)>\epsilon\right) \leq|H| e^{-2 m \epsilon^{2}}$

PAC bound and Bias-Variance tradeoff

$P\left(\right.$ error $\left._{\text {true }}(h)-\operatorname{error}_{t r a i n}(h)>\epsilon\right) \leq|H| e^{-2 m \epsilon^{2}}$
or, after moving some terms around,

$$
\begin{aligned}
& \text { with probability at least 1-ס: } \\
& \operatorname{error}_{\text {true }}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}
\end{aligned}
$$

- Important: PAC bound holds for all h,
but doesn't guarantee that algorithm finds best hat!!

What about the size of the hypothesis space?

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

- How large is the hypothesis space?

Boolean formulas with n binary features

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

Number of decision trees of depth k

Recursive solution
Given n attributes
$H_{k}=$ Number of decision trees of depth k
$\mathrm{H}_{0}=2$
$\mathrm{H}_{\mathrm{k}+1}=(\# \mathrm{choices}$ of root attribute) *
(\# possible left subtrees) *
(\# possible right subtrees)

$$
=n * H_{k}{ }^{*} H_{k}
$$

Write $L_{k}=\log _{2} H_{k}$
$\mathrm{L}_{0}=1$
$L_{k+1}=\log _{2} n+2 L_{k}$
So $L_{k}=\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1$

PAC bound for decision trees of depth K

$$
m \geq \frac{\ln 2}{2 \epsilon^{2}}\left(\left(2^{k}-1\right)\left(1+\log _{2} n\right)+1+\ln \frac{1}{\delta}\right)
$$

- Bad!!!
\square Number of points is exponential in depth!
- But, for m data points, decision tree can't get too big...

Number of decision trees with k leaves

$$
m \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|+\ln \frac{1}{\delta}\right)
$$

$\mathrm{H}_{\mathrm{k}}=$ Number of decision trees with k leaves
$\mathrm{H}_{0}=2$
$H_{k+1}=n \sum_{i=1}^{k} H_{i} H_{k+1-i}$

Loose bound:

$$
H_{k}=n^{k-1}(k+1)^{2 k-1}
$$

Reminder:

\mid DTs depth $k \mid=2 *(2 n)^{2^{k}-1}$

PAC bound for decision trees with k leaves - Bias-Variance revisited

$$
H_{k}=n^{k-1}(k+1)^{2 k-1} \quad \quad \operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}
$$

$$
\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{(k-1) \ln n+(2 k-1) \ln (k+1)+\ln \frac{1}{\delta}}{2 m}}
$$

What did we learn from decision trees?

- Bias-Variance tradeoff formalized
$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{(k-1) \ln n+(2 k-1) \ln (k+1)+\ln \frac{1}{\delta}}{2 m}}$
- Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum number of points that allows consistent classification
\square Complexity $m-$ no bias, lots of variance
\square Lower than m - some bias, less variance

What about continuous hypothesis spaces?

$\operatorname{error}_{t r u e}(h) \leq$ error $_{\text {train }}(h)+\sqrt{\frac{\ln |H|+\ln \frac{1}{\delta}}{2 m}}$

- Continuous hypothesis space:
$\square|H|=\infty$
\square Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

How many points can a linear boundary classify exactly? (2-D)

How many points can a linear boundary classify exactly? (d-D)

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
\square Measures relevant size of hypothesis space, as with decision trees with k leaves
error $_{t r u e}(h) \leq$ error $_{t r a i n}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

Shattering a set of points

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

VC dimension

Definition: The Vapnik-Chervonenkis dimension, $V C(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $V C(H) \equiv \infty$.

Examples of VC dimension

$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

- Linear classifiers:
$\square \mathrm{VC}(\mathrm{H})=\mathrm{d}+1$, for d features plus constant term b
- Neural networks
$\square \mathrm{VC}(\mathrm{H})=$ \#parameters
\square Local minima means NNs will probably not find best parameters
- 1-Nearest neighbor?

PAC bound for SVMs

- SVMs use a linear classifier

For d features, $\mathrm{VC}(\mathrm{H})=\mathrm{d}+1$:
$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{t r a i n}(h)+\sqrt{\frac{(d+1)\left(\ln \frac{2 m}{d+1}+1\right)+\ln \frac{4}{\delta}}{m}}$

VC dimension and SVMs: Problems!!!

Doesn't take margin into account

error $_{\text {true }}(h) \leq$ error $_{\text {train }}(h)+\sqrt{\frac{(d+1)\left(\ln \frac{2 m}{d+1}+1\right)+\ln \frac{4}{\delta}}{m}}$

- What about kernels?
\square Polynomials: num. features grows really fast $=$ Bad bound

num. terms $=\binom{p+n-1}{p}=\frac{(p+n-1)!}{p!(n-1)!}$
n - input features
p - degree of polynomial
\square Gaussian kernels can classify any set of points exactly

Margin-based VC dimension

- H: Class of linear classifiers: $\mathbf{w} . \Phi(\mathbf{x}) \quad(\mathrm{b}=0)$
\square Canonical form: $\min _{\mathrm{j}}\left|\mathbf{w} . \Phi\left(\mathbf{x}_{\mathrm{j}}\right)\right|=1$
- $\mathrm{VC}(\mathrm{H})=\mathrm{R}^{2}$ w.w
\square Doesn't depend on number of features!!!
$\square \mathrm{R}^{2}=\max _{\mathrm{j}} \Phi\left(\mathbf{x}_{\mathrm{j}}\right) . \Phi\left(\mathbf{x}_{\mathrm{j}}\right)$ - magnitude of data
$\square R^{2}$ is bounded even for Gaussian kernels \rightarrow bounded VC dimension
- Large margin, low w.w, low VC dimension - Very cool!

Applying margin VC to SVMs?

$\operatorname{error}_{t r u e}(h) \leq$ error $_{t r a i n}(h)+\sqrt{\frac{V C(H)\left(\ln \frac{2 m}{V C(H)}+1\right)+\ln \frac{4}{\delta}}{m}}$

- $\mathrm{VC}(\mathrm{H})=\mathrm{R}^{2} \mathbf{w} . \mathbf{w}$
$\square \mathrm{R}^{2}=\max _{\mathrm{j}} \Phi\left(\mathbf{x}_{\mathrm{j}}\right) \cdot \Phi\left(\mathbf{x}_{\mathrm{j}}\right)$ - magnitude of data, doesn't depend on choice of \mathbf{w}
- SVMs minimize w.w
- SVMs minimize VC dimension to get best bound?
- Not quite right: :
\square Bound assumes VC dimension chosen before looking at data
\square Would require union bound over infinite number of possible VC dimensions...
\square But, it can be fixed!

Structural risk minimization theorem

$\operatorname{error}_{t r u e}(h) \leq \operatorname{error}_{\text {train }}^{\gamma}(h)+C \sqrt{\frac{\frac{R^{2}}{\gamma^{2}} \ln m+\ln \frac{1}{\delta}}{m}}$
$\operatorname{error}_{\text {train }}^{\gamma}(h)=$ num. points with margin $<\gamma$

- For a family of hyperplanes with margin $\gamma>0$
$\square \mathbf{w} . \mathbf{w} \leq 1$
- SVMs maximize margin $\gamma+$ hinge loss
\square Optimize tradeoff training error (bias) versus margin γ (variance)

Reality check - Bounds are loose

- Bound can be very loose, why should you care?
\square There are tighter, albeit more complicated, bounds
\square Bounds gives us formal guarantees that empirical studies can't provide
\square Bounds give us intuition about complexity of problems and convergence rate of algorithms

What you need to know

- Finite hypothesis space
\square Derive results
\square Counting number of hypothesis
\square Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
\square Finite case - decision trees
\square Infinite case - VC dimension
- Bias-Variance tradeoff in learning theory
- Margin-based bound for SVM

■ Remember: will your algorithm find best classifier?

