Two SVM tutorials linked in class website

(please, read both):
= High-level presentation with applications (Hearst 1998)
= Detailed tutorial (Burges 1998)

SVMs, Duality and the

Kernel Trick (cont.)

Machine Learning — 10701/15781

Carlos Guestrin
Carnegie Mellon University

March 1st. 2006
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SVMs reminder

J/ec

minimizew w.w+ CY,¢;
- (W.Xj —|—b> Y > 1 _fja Vj
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Today's lecture
"
m Learn one of the most interesting and exciting
recent advancements in machine learning

The “kernel trick”
High dimensional feature spaces at no extra cost!

m But first, a detour
Constrained optimization!
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Dual SVM mterpreta’uon
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Dual SVM formulation —

_ the Iinearl¥ separable case

.. 1
MINIMIZEy ZZ Q; — 5 ZZ,] Q05 Y; Y XX

>ioy; =0

87 2 O
go\“O\ |
e pre g™, SUM b=y, — W.Xg
9 36\/\/(L Aunsl for any k where o > 0
0[:) /l"o\\/\ ’\’J’\K

oby Funchion duel —= %W‘A"O‘H(’ - org::\drlc‘?"ﬁm
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Reminder from last time: What if the
data is not linearly separable?
R

Use features of features
of features of features....

d(x): R"— F
~ ;L‘\‘lvu M%])}J)l\j 5 = (X, 7CJ

CP(I)’ i—z Cﬁ’(‘):).. ;C[-.; \

va . I).
k.%ﬁsi—— 7,
' ’)C% anf/z
chs- 4™ v e 2%, L
ATV QU IS SN &g@ ,Of;j
Feature space can really quickly!




number of monomial terms

Higher order polynomial
gher order polyno gs/&jmagﬁ%
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d'(m —1)!

d4+m—1 ) _ (d+m—1)!

m — input features
Sud { d — degree of polynomial

|

grows fast!

d._i_G,m’=_j_O_O’

about 1.6 billion terms




Dual formulation only depends on

__dot-products, not on w! O"‘”jbx

Y VtO”' ﬁ‘)"dd(,
. . . 1 i. I' - ‘L: L &
minimizea  35; o — 5 325 5 G0 YY XX, VD T O

2 iy =0 ne W \

C>a;>0 st Feabarts @Qﬂ
Al L retd 5 qb(’Ig\ ' Qﬁ(XO
— . D)

minimizeq > ; o — %Zi,j oYy K (X, Xg)
K(x;,x;) = P(x5) - P(x5)

Yiaiy; =0
CZC\%>O
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‘\,'5 ot_“ ,9<h«j

Finally: the “kernel trick”! » /=™

" “E
minimizeg Zz o — %Zz,j Qi Y5iY
K(x;,x5) = P(x5) - P(x5)

2oy = 0
CZO(?;>O

m Never represent features explicitly

Compute dot products in closed form h —

TS | = — w.P(x

m Constant-time high-dimensional dot- Yk ( k)
products for many classes of features for any k where C > o >0

m Very interesting theory — Reproducing
Kernel Hilbert Spaces

Not covered in detail in 10701/15781,
more in 10702
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Common kernels
" i,
m Polynomials of degreelxd E
K(u,v) = (u-v)*

/
‘ !-

K(u,v) = (u-v+ 1)

K(u,v) = exp

%

m Sigmoid
K(u,v) =tanh(nu-v +v)

s
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Overfitting?
" J
m Huge feature space with kernels, what about
overfitting???

Maximizing margin leads to sparse set of support

vectors
Pabt

Some interesting theory says that SVMs search for
simple hypothesis with large margin

f 1+ . - - 6
Often robust to overfitting f ;
— 7
S parse Solukivs 9 @ +7
7 (:Lw Sw of "‘C’bﬁ- am 4(_\(\
-3 \fs]t pver FAY *
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What about at classification time
" J
m For a new input X, if we need to represent ®(x),

we are in trouble!  if hevik wrdc Wb dee lovgt
m Recall classifier: sign(w.®(x)+b)

w=> a;y;P(x;)
i

m Using kernels we are cool!
K(u,v) = ®(u) - ¢(v)

w. OR) = 2 ofi M DICRVLED), b=y —w.d(xg)
— ‘eh;z;‘\gfj \/L\;S—g for any k£ where C > a5 > 0

B Com?\/\'\"l— K (x ,:Zii)
NW 1A ()M’ K D CP()() ) Sijﬂ( W . CP(X)+5>
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SVMs with kernels
" A
m Choose a set of features and kernel function
m Solve dual problem to obtain support vectors o

—

m At classification time, compute:
AW oL ol A Aates

w- P(x) = Z E“_z'yiK(a X;) \

E——e——

b=y — ) oy K (xp,%;) sign (W - ®(x) +b)

{
for any k where C > o, > 0
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Remember kernel regression
"

Remember kernel regression???
1. w,=exp(-D(x, query)’ /K, ?)

2. How to fit with the local poﬁvts?
Predict the weighted average of the outputs:

predict = Zw,y; / Zw;
QJ«I, — |5

é—hv\—bﬁ““ k"""""\ K(I)I;)

NL W oo')/\’)’ A

L () Y }
San |
R Z el O
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SVMs v. Kernel Regression
"

SVMs Ke)rnel Regression
- . T= Z K2 &
sign (w - ®(x) + b) M= o (Zi Ui (x Xi)>
of Z] K(Xa X])
sign (Z oy K (x,%;) + b)
i be—un 2
Wd‘b‘dg \

o5F5 {g',@n (?l/ﬂ; }ji K6,
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SVMs v. Kernel Regression

SVMs Kernel Regression
sign (w - ®(x) 4 ) > yi K (%,%;)
or stgn L7t i

sign] Differences:

m SVMs:
Learn weights \afpha_i (and bandwidth)
Often sparse solution o

m KR:

Fixed “weights”, learn bandwidth
Solution may not be sparse
Much simpler to implement
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What's the difference between
SVMs and Logistic Regression?
JE—

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
Y N
'.r\c,orm_ﬂ anzc* _—
'High dimensional Yes! _No—
features with )uf,\L\ h-(dd ! o3l )
ernels L ) Je. ,
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Kernels In logistic regression
"
(]ﬁ(ﬂ AR oim,

1
PY=1lew) = T —omm Fichos

m Define weights in terms of support vect 93” Tsorrt
w=> a;®(x;)
0 -

1
1 4 e~ (i @i®P(x:)-P(x)+b)
1
1 _|_ 6—(2-0@;K(X Xi)‘l‘b)

PY=1|zw) =

AS(A
m Derive simple gradient descev}ﬂ faie o%‘n Q %WA( iswt
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What's the difference between SVMs

] and Logistic -

egression? (Revisited)

output

SVMs Logistic
Regression

Loss function Hinge loss\___ Log-loss \_
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!

[9!_64«4,7, f\'\hﬂe, (655 5’C“"‘S& & Iz)g-— s
Semantics of “margin” "Real’probabilities

©2006 Carlos Guestrin
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What you need to know

D’\Z ! y N
" A L <‘> .
= Dual SVM formulation o (1)
How it's derived 5> WX {*{lj”* j
~
: With
O The. kernel tnfk. o?%’"\ ‘ ophn el
m Derive polynomial kernel won \ min W.w
m Common kernels > mMin w (L
m Kernelized logistic regression ophion | ;si?ﬁws

m Differences between SVMs and logistic regression

(R\"*\Wﬁ ~ ?X\LX
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Acknowledgment
"

m SVM applet:

O http://www.site.uottawa.ca/~qgcaron/applets.htm

©2006 Carlos Guestrin
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More details:

General: http://www.learning-with-kernels.org/

Example of more complex bounds:
http://www.research.ibm.com/people/t/tzhang/papers/imir02_cover.ps.gz

PAC-learning, VC

Dimension and
Margin-based Bounds

Machine Learning — 10701/15781

Carlos Guestrin
Carnegie Mellon University

March 1st. 2005
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What now...
" J
m We have explored many ways of learning from
data

m But...
How good is our classifier, really?

How much data do | need to make it “good enough™?

——

Lﬂ AY kg T/\U’ V]

©2006 Carlos Guestrin
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A simple setting...
" JdE
m Classification

m data points
Finite number of possible hypothesis (e.g., dec. trees

of depth d)

m A learner finds a hypothesis h that is consistent
with training data

Gets zero error in training — error,,(h) = 0

m What is the probability that h has more than ¢
true error?

error,e(h) > ¢ Plower,  (N7e)< ¥

- 6-0

©2006 Carlos Guestrin 24



How likely Is a bad hypothesis to

. odetm data Points right?

m Hypothesis hthat Is consistent with training data —
got mi.i.d. points right

m Prob. h with error,.(h) > € gets one data point right
P(Cme (R 7 €, andk geb ondahe paiitighy) £ 1-¢

7,(’1' (ml(g

. hed | uhathesis ~— T —
m Prob. h with error, .(h) > € gets m data points right

Pk h gk ludy) s (1-8)"

mevre  AcTn /#&SS |)/f°~!7 a bad AOP 617[5
o VEv“-
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But there are many possible hypothesis
that are consistent with training data

ontL. Qr 6)%«5

/H‘\SL_ v Gréf oneL \ \
~
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How likely is learner to pick a bad

] hxgothesis

m Prob. h with error, .(h) > € gets m data points right

m [here are k hypothesis consistent with data
How likely is learner to pick a bad one?

Pl st ome of e £ ) 7
M ]"' OQ,} [U\—Ck‘j ¢

P (oe g luety ] (1€
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Union boun
" NSNSt .l o right

m P(AorBorCorDor..) £ f(a)+ P(BI+F)+-

( AYLe™
3

A

D
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How likely is learner to pick a bad

] hxgothesis

m Prob. h with error, .(h) > € gets m data points right

m [here are k hypothesis consistent with data

How likely is learner to pick a bad one? >
D(h, bk 8 9oF lecky or fabad 2 ooF luckg - or baoe

P(}\\ [%A £ (‘*Ck“j) ¢ Plhy Lad )[qckj>“t ?/A% ) e
s (1-g)" _

¥k5w ‘>r7 '8 K

i CETH (o et
’ )L(\“‘E\ e

< \H\ﬁj e &mz%m;'}?)
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Review: (Generalization error In

. ghniie hypothesis spaces [Haussler ‘s8]

m Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < € < 1 : for any learned

—_——

hypothesis h that is consistent on the training data:
P(error%(h) >e) < |H|le” ™ <o

§-O |

v/(own zxpmﬁv‘\)b £t \

J
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Using a PAC bound

"
= Typically, 2 use cases:  P(errorg(h) >¢) < [H[e™ ™
1: Pick € and o, give you m
2: Pick m an@,aive you € _ i _
@?élme_ma{[ %M\\,,()///fmé

S L lthQ/ me
|| -me < lhy A
" l ¢ < | (lan“""%—B

> mz % NG z
_~ fran sevd < '>
Creller £ /

mo r& Aﬁ:\% r\d"
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Review: (Generalization error In

. ghoiie hypothesis spaces [Haussler '8g]

m Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < e < 1 : for any learned
hypothesis h that is consistent on the training data:

P(errory(h) >¢) < |H|e ™

"'G K_ CCA/’\ C\\ (/chgs \20//\ O
LonSl S Cloesi Gl

— "H’\,U\

Even if h makes zero errors in training data, may make errors in test
©2006 Carlos Guestrin 32



Limitations of Haussler ‘88 bound
" J
P(errorgy(h) >¢) < |H|e ™€

@ m Consistent classifier z
V‘KL‘L Sunech RN C/qgs\

Jhert ) '

@ m Size of hypothesis space / rally el
l?bwnA &&ffhﬂ(s on l H ) lew, L 7

\ ‘l’l%h[fl\('?

w C "V\’\.Y\MM
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What if our classifier does not have
zero error on the training data?
= I

m A learner with zero training errors may make
mistakes in test set

m What about a learner with error,.;,(h) in training set?

©2006 Carlos Guestrin 34



Simpler question: What's the

] exgeoted error of a hypothesis?

m The error of a hypothesis is like estimating the

Tal ')[‘,\ (on m -‘—inu.s
Mpi[iml—e?r of a coin! | p \ (i 270
\ dof\(‘[’ |Casw i A Y /\\ A ©
& v. O

m Chernoff bound: for mi.d.d. coin flips, X4,..., X5
where x; € {0,1}. For O<e<1: o

©2006 Carlos Guestrin 35



Using Chernoff bound to estimate

error of a smple hypothe3|s

d

92$2>€) <€—2me

(2

) e @ # b opet

avrory ok amisE ks
i — A T «}& A et point Wi
LT (RG) £ 460)

P& ACAER10) :(:\ZI;

ZV‘YOV’\_YC‘] ~ = /'

1 aY \
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But we are comparing many

. gaypothesis: Union bound

For each hypothesis h;:
P (errortrue(hi) — errortrain(hi) > 6) < 6_2m€2

What if | am comparing two hypothesis, h, and h,?

P(ng) ) - | g v ner S jdl"\j -+
[ 0’*\7&}'{ A H G‘F }\'\ S

 Ipnsl
?(:EX\ errar—hru-l, U\l\ _ (V‘ror’(_m‘m((‘-(\7i> S \‘H’\ 6 (€ E

I

P —
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Generalization bound for |H|

] hxgothesis

m Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < € < 1 : for any learned
hypothesis h:

2
P (errortrue(h) — €rrOrypqin(h) > €) < |H‘€_2m€
2mer = 20 ned s gped L

S'\}Q N Ha&%[;wd bou\np'f for CthTﬁ‘OH( L -
PE ) ¢

E: O\ __:7 m:& = !b(b
m = (006
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PAC bound and Bias-Variance

tradeoff

2
P (errortrue(h) — errOfrgin(h) > €) < |~H|€_2m6

or, after moving some terms around,

with probability at least 1-5: 1
In|H| 4+ In =
errortrue(h> < errortrain(h> |
/r7 o " \ 2m .
e by Tovermat
mhim T lexrcer J srmaller [ Hsmel]
i/ Sma)\\u/ ']\ l‘*"‘l)“/ ,H, fﬁvj(

m Important: PAC bound holds f&r all h,
gorithm finds best h}!!

6 Carlos Gues

but doesn’t guarantee that al



What about the size of the

. alpothesis space?
1 1
m > 2—€2<In|H|—|—Ing>

= How large is the hypothesis space? |H!

[ H

©2006 Carlos Guestrin
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Boolean formulas with n binary features
= S
wk¢4'5 JV\IH\7

1 1
m > —2<In|H|—|—In—>
wSU\"Vko"‘ 26 5

Co ~\Wn C Fons

Y
XNl ‘ Vs = Xa A Xz A X3

c he= X9 A1Y5 /\8(8'“
r|F[ofl | 2=<h N odib..

[

[

(e ool | Tk £gp1,52 73, 2
T’\‘ ' \ (

‘H\ ) Tza\\,)\w‘y()

n Z N lr\3
¢ (\rep‘\\)vta\ﬁj‘ \Y\\\/l\ er SN‘“\\
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Number of decision trees of depth k
* m > 5oz (1410 5)

€
Recursive solution
Given n attributes
H, = Number of decision trees of depth k
H, =2
H,., = (#choices of root attribute) *

(# possible left subtrees) *

(# possible right subtrees)

=N * Hk * Hk
Write L, = log, H,
L, =1
L., =log, n+ 2L,
So L, = (2k-1)(1+log, n) +1
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PAC bound for decision trees of

] degth K

N2/, . 1
> o2 (@F =D +10g2m) + 1+ 1n )

m Bad!!l
Number of points is exponential in depth!

m But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points

In



Number of decision trees with k leaves

- > 1 (|n|H|+|n1)
m> =
= Z 52 5
H, = Number of decision trees with k leaves
H, =2
k
Hyy1=n ) HiHpyq1_;
=1
Loose bound: Reminder:

Hy = nf (k4 1)2k-1 IDTs depth k| = 2 % (2n)2 1

©2006 Carlos Guestrin
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PAC bound for decision trees with k
leaves — Bias-Variance revisited
" SN

In|H|+In

Hy=n""1(k+ 1)1 erroripuc(h) gerrormm<h>+J i

(k—1)Inn+ (2k—1)In(k+ 1)+ In3

errortrue(h) < errortrmjn(h) _I_\
2m
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What did we learn from decision trees?
" A
m Bias-Variance tradeoff formalized

(k—1)Inn+ (2k—1)In(k+ 1)+ In3

2m

errorrye(h) < errortmm(hHJ

m Moral of the story:

Complexity of learning not measured in terms of
size hypothesis space, but in maximum number of
points that allows consistent classification
Complexity m — no bias, lots of variance
Lower than m — some bias, less variance
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What about continuous hypothesis

] sgaces?

In|H|+In%

errortrue(h) < errortrain(h) + \

m Continuous hypothesis space:
IH| = 0o
Infinite variance???

2m

m As with decision trees, only care about the
maximum number of points that can be

classified exactly!

©2006 Carlos Guestrin
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How many points can a linear

] boundar¥ classify exactly? (1-D)

©2006 Carlos Guestrin
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How many points can a linear

] boundar¥ classify exactly? (2-D)

©2006 Carlos Guestrin
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How many points can a linear

] boundar¥ classify exactly? (d-D)

©2006 Carlos Guestrin
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PAC bound using VC dimension

= Number of training points that can be
classified exactly is VC dimension!!!

Measures relevant size of hypothesis space, as
with decision trees with k leaves

VCO(H) ('”vé?m | 1)+|n§

errorirye(h) < erroryeqin(h)- \

m
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Shattering a set of points
"
Definition: a dichotomy of a set S is a

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

©2006 Carlos Guestrin
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VC dimension
" A

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

©2006 Carlos Guestrin
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Examples of VC dimension

= ... ) < rror i+ O el 1)+ 3
m Linear classifiers:
VC(H) = d+1, for d features plus constant term b

m Neural networks
VC(H) = #parameters

Local minima means NNs will probably not find best
parameters

m 1-Nearest neighbor?

©2006 Carlos Guestrin 54



PAC bound for SVMs
" A
m SVMs use a linear classifier
For dfeatures, VC(H) = d+1:

(d+ 1) (ln

2m

d+1

+1)+1In%

errortrue(h) S errortrain(h) I \

©2006 Carlos Guestrin
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VC dimension and SVMs: Problems!!!

"
Doesn’t take marj;in Into account

d+1)(InZy+1)+In3

m

errortrue(h) < errortrain(h)+

m What about kernels?
Polynomials: num. features grows really fast = Bad bound

_ — 1)1
,/j num. terms =<p+n 1)=(p+n )

D pl(n —1)!

" n—input features
_— " - p—degree of polynomial

Tz 3+ 3 8 7 8 8 n

Gaussian kernels can classify any set of points exactly
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Margin-based VC dimension
" A
m H: Class of linear classifiers: w.®(x) (b=0)
Canonical form: min; |w.®(x)| = 1
m VC(H) = REw.w
Doesn’t depend on number of features!!!
R= = max; ®(x,).®(x;) — magnitude of data
R? is bounded even for Gaussian kernels — bounded VC
dimension

m Large margin, low w.w, low VC dimension — Very cool!
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Applying margin VC to SVMs?
" J

VC(H) ('”vé?m F1) +1In4

m

errorirye(h) < erroryeqin(h)- \

m VC(H) = R2w.w
R? = max, ®(x,).®(x,) — magnitude of data, doesn’t depend on choice of w
m SVMs minimize w.w

m SVMs minimize VC dimension to get best bound?

m Not quite right: ®
Bound assumes VC dimension chosen before looking at data

Would require union bound over infinite number of possible VC
dimensions...

But, it can be fixed!
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Structural risk minimization theorem
-

R2 1
Inm—l—lng

errorye(h) < error] . (h) + C\ 7’

m

error,

imain () = NUM. points with margin <~

m For a family of hyperplanes with margin y>0
w.w < 1
m SVMs maximize margin vy + hinge loss

Optimize tradeoff training error (bias) versus margin y
(variance)
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Reality check — Bounds are loose
"

errortrue(h) S errortrain(h) +

m

A >4

\l(d—l—l)(ln%—l—l)—l—lng

04H

03
nas|
0z}
oishH
: _gz
o
1 1 1
o 1 2

ons

m (in 105)

m Bound can be very loose, why should you care?
There are tighter, albeit more complicated, bounds

Bounds gives us formal guarantees that empirical studies can’t provide

Bounds give us intuition about complexity of problems and
convergence rate of algorithms
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What you need to know
" J
m Finite hypothesis space
Derive results

Counting number of hypothesis
Mistakes on Training data

m Complexity of the classifier depends on number of
points that can be classified exactly
Finite case — decision trees
Infinite case — VC dimension
m Bias-Variance tradeoff in learning theory
m Margin-based bound for SVM

m Remember: will your algorithm find best classifier?
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