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Announcements

Third homework 
Out later today
Due March 1st
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Why not just use Linear Regression?
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Using data to predict new data
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Nearest neighbor
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Univariate 1-Nearest Neighbor

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(si) for some 
unknown function f.
Given query point xq, your job is to predict 
Nearest Neighbor:
1.   Find the closest xi in our set of datapoints

( )qxfy ≈ˆ

( ) qi xxnni −= argmin
i

( )nniyy =ˆ2.  Predict

Here’s a 
dataset with 
one input, one 
output and 
four 
datapoints.
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1-Nearest Neighbor is an example of….
Instance-based learning

x1 y1
x2 y2
x3 y3

.

.
xn yn

A function approximator 
that has been around 
since about 1910.

To make a prediction, 
search database for 
similar datapoints, and fit 
with the local points.

Four things make a memory based learner:
A distance metric
How many nearby neighbors to look at?
A weighting function (optional)
How to fit with the local points?
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1-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Multivariate 1-NN examples

Regression Classification
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Multivariate distance metrics
Suppose the input vectors x1, x2, …xn are two dimensional:
x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ).
One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2

The relative scalings in the distance metric affect region shapes.

Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2
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Euclidean distance metric
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Or equivalently,

where

Other Metrics…
Mahalanobis, Rank-based, Correlation-based,…
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Notable distance metrics 
(and their level sets)

L1 norm (absolute)

L∞ (max) norm

Scaled Euclidian (L2)

Mahalanobis 
(here, Σ on the previous 
slide is not necessarily 
diagonal, but is symmetric
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Consistency of 1-NN

Consider an estimator fn trained on n examples
e.g., 1-NN, neural nets, regression,...

Estimator is consistent if prediction error goes to zero as 
amount of data increases

e.g., for no noise data, consistent if:

Regression is not consistent!
Representation bias

1-NN is consistent (under some mild fineprint)

What about variance???
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1-NN overfits?
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k-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

k
1. A weighting function (optional)

Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are 
clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?
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Weighted k-NNs

Neighbors are not all the same



Kernel regression
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Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wi = exp(-D(xi, query)2 / Kw
2)

Nearby points to the query are weighted strongly, far points 
weakly. The KW parameter is the Kernel Width. Very 
important.

4. How to fit with the local points?
Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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Weighting functions

wi = exp(-D(xi, query)2 / Kw
2)

Typically optimize Kw
using gradient descent

(Our examples use Gaussian)
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Kernel regression predictions

Increasing the kernel width Kw means further away points get an 
opportunity to influence you.
As Kw ∞, the prediction tends to the global average.

KW=10 KW=20 KW=80
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Kernel regression on our test cases

KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.

Choosing a good Kw is important. Not just for Kernel Regression, but 
for all the locally weighted learners we’re about to see.
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Kernel regression can look bad

KW = Best. KW = Best. KW = Best.

Time to try something more powerful…
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Locally weighted regression

Kernel regression:
Take a very very conservative function approximator 
called AVERAGING. Locally weight it.

Locally weighted regression:
Take a conservative function approximator called 
LINEAR REGRESSION. Locally weight it.
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Locally weighted regression

Four things make a memory based learner:
A distance metric

Any
How many nearby neighbors to look at?

All of them
A weighting function (optional)

Kernels
wi = exp(-D(xi, query)2 / Kw2)

How to fit with the local points?
General weighted regression:

( )
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How LWR works

Query

Linear regression
Same parameters for 
all queries

Locally weighted regression
Solve weighted linear regression
for each query
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Another view of LWR

Image from Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.
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LWR on our test cases

KW = 1/16 of x-axis 
width.

KW = 1/32 of x-axis 
width.

KW = 1/8 of x-axis width.
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Locally weighted polynomial regression

Kernel Regression
Kernel width KW at optimal 
level.

KW = 1/100 x-axis

LW Linear Regression
Kernel width KW at optimal 
level.

KW = 1/40 x-axis

LW Quadratic Regression
Kernel width KW at optimal 
level.

KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the 
WXTWX matrix. As the regression degree increases, the kernel width 
can increase without introducing bias.
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Curse of dimensionality for 
instance-based learning

Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset – very slow!
We’ll see fast methods for dealing with large datasets

Instance-based learning often poor with noisy or irrelevant 
features



©2006 Carlos Guestrin 30

Curse of the irrelevant feature
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What you need to know about 
instance-based learning

k-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

Kernel regression
Set k to n (number of data points) and optimize weights by 
gradient descent
Smoother than k-NN

Locally weighted regression
Generalizes kernel regression, not just local average

Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often killers for instance-based approaches
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Acknowledgment

This lecture contains some material from 
Andrew Moore’s excellent collection of ML 
tutorials:

http://www.cs.cmu.edu/~awm/tutorials

http://www.cs.cmu.edu/~awm/tutorials


©2006 Carlos Guestrin 33

Two SVM tutorials linked in class website 
(please, read both):

High-level presentation with applications (Hearst 1998)
Detailed tutorial (Burges 1998)

Support Vector 
Machines

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 20th, 2005
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Linear classifiers – Which line is better?

Data:

Example i:

w.x = ∑j w(j) x(j)



©2006 Carlos Guestrin 35

Pick the one with the largest margin!

w
.x

+ 
b 

= 
0

w.x = ∑j w(j) x(j)
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Maximize the margin

w
.x

+ 
b 

= 
0
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But there are a many planes…

w
.x

+ 
b 

= 
0
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Review: Normal to a plane

w
.x

+ 
b 

= 
0
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Normalized margin – Canonical 
hyperplanes

w
.x

+ 
b 

= 
+1

w
.x

+ 
b 

= 
-1

w
.x

+ 
b 

= 
0

margin γ

x-
x+
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Margin maximization using 
canonical hyperplanes

w
.x
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= 
+1

w
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w
.x
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= 
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margin γ
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Support vector machines (SVMs)

w
.x

+ 
b 

= 
+1

w
.x

+ 
b 

= 
-1

w
.x

+ 
b 

= 
0

margin γ

Solve efficiently by quadratic 
programming (QP)

Well-studied solution algorithms

Hyperplane defined by 
support vectors
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What if the data is not linearly 
separable?

Use features of features 
of features of features….
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What if the data is still not linearly 
separable?

Minimize w.w and number of 
training mistakes

Tradeoff two criteria?

Tradeoff #(mistakes) and w.w
0/1 loss
Slack penalty C
Not QP anymore
Also doesn’t distinguish near 
misses and really bad mistakes
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Slack variables – Hinge loss

If margin ≥ 1, don’t care
If margin < 1, pay linear 
penalty
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Side note: What’s the difference between 
SVMs and logistic regression?

SVM: Logistic regression:

Log loss:
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What about multiple classes?
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One against All

Learn 3 classifiers:
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Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights
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Learn 1 classifier: Multiclass SVM
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss
Relationship between SVMs and logistic regression

0/1 loss
Hinge loss
Log loss

Tackling multiple class
One against All
Multiclass SVMs
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Acknowledgment

SVM applet:
http://www.site.uottawa.ca/~gcaron/applets.htm

http://www.site.uottawa.ca/~gcaron/applets.htm
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