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Announcements
" A
m Third homework %

Out later today
Due March 18t

S j’
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Why not just use Linear Regression?
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Using data to predict new data
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1-Nearest neighbor
" J
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Univariate 1-Nearest Neighbor
" S

Given datapoints (X;,Y1) (X,,Y5)..(Xx,Yn)-Where we assume y,=f(X) for some
unknown function f. =~ — R N
Given query point x,, your job is to predict y ~ f (Xq)
Nearest Neighbor: -
1. Find the closest x; in our set of datapoints
C,(&Sc%’]' | N Oqc:f;‘(’d\

i(nn) = argmin|x, — X,

\

N\

2. Predict Y= yi(nn)

Here's a
dataset with [

X ©
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one input, one

output and “_/ __— datapoint
four Lk ok,
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1-Nearest Neighbor is an example of....
Instance-based learning
"
A function approximator

that has been around
since about 1910.

%mm
search database for
similar datapoints, and fit
with the local points.

Four things make a memory based learner:
] distance metric Aﬂ-& n. 7 Closes

| How many nearby neighbors to look at?

| A weighting function (optional)

| How to fit with the Ioca@nts?
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1-Nearest Neighbor
" J

Four things make a memory based learner: Q;f/“/l’ca«

1. Adistance metric inpif X ¥ =g min 18S ‘X‘@ SRR

Euclidian (and many more) ‘
Uclidian (and r ).

2.  How many nearby neighbors to look at?

One
e

3. A weighting function (optional)
Unused

——

4.  How to fit with the local points?
Just predict the same output as the nearest neighbor.

Ob\+ P\,ql (3“K

%
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Multivariate 1-NN examples

Regression Classification




Multivariate distance metrics
" J
Suppose the input vectors x1, x2, ...xn are two dimensional:

_Z(_J_ = ()&@l X;@) J X_2 = (XZO’ XZQ) ! "'XN = (XN'ZL ! XN_Z_)'
One can draw the nearest-neighbor regions in input space.

. — > oy ) —J 5S¢

Dist(xi,x;) = (i1 = %j0)* + (Xip = Xp)*  Dist(x;,x)) =(x;3 — X;1)?+(3X;, — 3%)?
Irul('jl‘f- l ;

The relative scalings in the distance metric affect region shapes.

£t
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Euclidean distance metric
" A

D(X,X'):\/Zgiz(xi—X'i)2 wreighteA
i

Or equivalently, Lk
' T '
where D(X,X)Z\/(X—X) Z(X-X)
B 7 AA(CL
2 re
Gl 02 O ZﬂC{ o'/‘ c):[
3 = 0 o =+ 0 Leaodres 20H4
A il
0 0 - o "C"‘z“/
- - Vo vies e

Other Metrics...
m Mahalanobis, Rank-based, Correlation-based,...

\_/
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Notable distance metrics
(and thelir level sets)

S o it
. Po;,\+5
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Ixll, = 2l

| WA
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L, norm (absolute)

(Xl = ok [x3)

é (érro lpe-\-cf&
] 'lr\T?V"l‘3

(here, X on the previous
slide is not necessarily
diagonal, but is symmetric

Loo (max) norm
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Consistency of 1-NN
" A

m Consider an estimator f, trained on n examples
e.g., 1-NN, neural nets, regression,...1WL
m Estimator is consistent if prediction error goes to zero as
‘___..a_a ——
amount of data increases
e.g., for no noise data, consistent if:

im MSE(f,) =0

n—oo

m Regression is not consistent!
Representation bias

o Nno '\PW' \;x.?s

m 1-NN Is conS|stent (und_ef_r some mild fineprint)
~ Do, {-(_s‘éﬂrr‘orf,.qo

. NN 9 [ofs
What about variance??? | Vit
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1-NN overfits?

Applying facede 201:8N:9 to file j1.mbl
viscozity
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—

K-Nearest Neighbor

Four things make a memory based learner:

1.

A distance metric

Euclidian (and many more)
—— K ru.ijl\ovl 7o MW X

Ho any nearby neighbors to look at?
Aweighting function (optional) X%, %2

Unused

How to fit with the local points?
Just predict the average output among the k nearest neighbors.

naY Y ¢

K
%2\ Z_‘y

—

K
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k-Nearest Neighbor (here k=9)

Epplying facode 209:8N:9 to file jl.mbl

1. mb1-209:5: 9.

2pplying facode 209:8N:9 to file ki.mbl
¥

400

500 k1.mb1-A09:8N:9.

Applying facode A09:8N:9 to file al.mbl
attributel

14

12

10

al.mbl-A09:8He9.

g 10

K-nearest neighbor for function fitting smoothes away noise, but there are

clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

©2006 Carlos Guestrin
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Weighted k-NNs
" J
m Neighbors are not all the same

©2006 Carlos Guestrin
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Kernel regression gt eyt

— /)
"

Four things make a memory based learner:

1. A distance metric *71?:
Euclidian (and many more) _
2. How many nearby neighbors to look at? é@"‘*"“)

All of them N 5
= ¥Ya)
3. Aweighting function (optional) UVN.V
w; = exp(-D(x;, query)?/ K,?)

Nearby points to the query are weighted strongly, far points

weakly. The K, parameter is the Kernel Width. Very
Important.

4. How to fit with the local points?
Predict the weighted average of the outputs:
predict = 2wy, / Zw, wi‘%‘)ﬂ)\

\ WW\;’&LA AV trode
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Welighting functions
"

1/d 1/d2 1/(d+1}
—_ _ 2 2
w; = exp(-D(x;, query)®/ K,?) 19 I -
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Typically optimize K, (Our examples use Gaussian)
using gradient descent
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Kernel regression predictions

ol
LI

-
2501 on 200 300

— .|
Ky=10 §#~

Increasing the kernel width K, means further away points get an

Ky=20 \
( w\m&}r) \\U‘S"‘T\@H

o ——

opportunity to influence you.
As K2 oo, the prediction tends to the global average.
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Kernel regression on our test cases

attributel

s

KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.

4(\,\'\4-( 300A

Choosing a good K, is impartantNot just for Kernel Regression, but
for all the locally weighted learners we're about to see.

©2006 Carlos Guestrin 21



Kernel regression can look bad

FAis

KW = Best.

KW = Best. KW = Best.

_—

Time to try something more powerful...
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Locally weighted regression
" J

Kernel regression:

Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.

©2006 Carlos Guestrin
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Locally weighted regression
" J

C Four things make a memory based learner:
- A distance metric

Any

C How many nearby neighbors to look at?

All of them

- A weighting function (optional)
Kernels
WD(XL query)2 / Kw2)

= How to fit with the local points?
General weighted regression:

A ° N 2

B=argmind w’(y, —B'x,)

- P k:17 [(_ esd s yves
l\ Po s %MA

vvo.'\j
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How LWR works

Bty e
| o o
S INCTR VLY Forwrj

L new X '
Linear regression
= Same parameters for

Locally weighted regression
= Solve weighted linear regression

all queries for each query
B=(X"X)"X"Y B=(WX'WX] WX'WY
w, 0 0 0
0w, 0 0
W = :
0 0 . 0
0 0 0 w

©2006 Carlos Guestrin
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Another view of LWR
" A

o 7&4— A {‘/\L o Curve
l\mc\r r(g““'”"

/kernel too wide — includes nonlinear region """ - e,

kernel just right _
kernel too narrow — excludes some of linear region

Image from Cohn, D.A., Ghahramani, Z., and JeBR@0B.CE968) G\etiwtrirearning with Statistical Models", JAIR Volume 4, pages 28-145.



LWR on our test cases

G -

4 -

2 evan Hotre

0 u] 2 4 & g
attributel

KW = 1/16 of x-axis KW = 1/32 of x-axis KW = 1/8 of x-axis width.
width. width.
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Locally weighted polynomial regression

2pplying facode Q40:8M:9 to file il.mbl
ttttt ibutel

2 il.mb1-040:8N:9.

Kernel Regression LW Linear Regression LW Quadratic Regression
Kernel width K,, at optimal  Kernel width K, at optimal  Kernel width K,, at optimal
level. level. level.

KW = 1/100 x-axis KW = 1/40 x-axis KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the
WXTWX matrix. As the regression degree increases, the kernel width

can increase without introducing bias.
©2006 Carlos Guestrin 28



Curse of dimensionality for

igstance-based learning

m Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset — very slow!
We’'ll see fast methods for dealing with large datasets

m Instance-based learning often poor with noisy or irrelevant
features T

—_—
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Curse of the Irrelevant featg_e
" A
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What you need to know about
Instance-based learning
" SN

m K-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?

m Kernel regression

Set k to n (number of data points) and optimize weights by
gradient descent

Smoother than k-NN
m Locally weighted regression
Generalizes kernel regression, not just local average

m Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features oftegkillers.for.instance-based approaghes




Acknowledgment
" A
m This lecture contains some material from

Andrew Moore’s excellent collection of ML
tutorials:

http://www.cs.cmu.edu/~awm/tutorials

©2006 Carlos Guestrin
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http://www.cs.cmu.edu/~awm/tutorials

Two SVM tutorials linked in class website

(please, read both):

» High-level presentation with applications (Hearst 1998)
» Detailed tutorial (Burges 1998)

Support Vector

Machines

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 20t, 2005
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Linear classifiers — Which line Is better?

Example I:

R ngm)> — m features

34



Pick the one with the largest margin!

“confidence” = (W-Xj T b) i
mea Ke Xl,XZJ%)""))CI
(w5 +5)-3j leva
— _ make Smalestd' o /4»:]:
~$ Tcssilb(&}
= MEGN = min
- mox X
w,b
: Wty £5) g5 > Y

W.X =2, w() x0)

©2006 Carlos Guestrin 35



Maximize the margin
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But there are a many planes...
" J

ICID So\u)
Py w.X £5=0
<
L + = z(W-“S}[")‘()S \; 2wW.X 25 T ¢
Eﬂj = w[\a-"j Co-rn(;'o(eqa_ ,\%f)
I = ,
+ & _ (z“"}ﬁ*%)bs
:B:n = Jbb‘k(ﬂ& ’CO’\#GC(‘&)'
E[l':' e W“’,’l\ e Lo
T orle /)
':[::' | | ‘L:)
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Review: Normal to a plane

@)

©2006 Carlos Guestrin
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Normalized margin — Canonical

. galyerplanes

~
+

L
.:B:. =
.:B:. -
T+
X =
P 4 -

margin v
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Margin maximization using

canonlcal hxperplanes

o
-Q
+ N+
>
=

~
.Q

Y B
=

margin ¥

m|n|m|7a A7 A7

L\aw VYV « VY
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Support vector machines (SVMs)

minimizew WwW.wW
(w.xj +b) y; > 1, Vj

= m Solve efficiently by quadratic
programming (QP)

Well-studied solution algorithms

m Hyperplane defined by
support vectors
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What If the data Is not linearly

] segarable?
Use features of features

% of features of features....
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What if the data is still not linearly

] segarable?
MminiMmizéw W.W

a _ m Minimize w.w and number of
+ 4 7 L = = training mistakes
_ Tradeoff two criteria?

4 m Tradeoff #(mistakes) and w.w
0/1 loss
Slack penalty C
Not QP anymore

Also doesn’t distinguish near

misses and really bad mistakes
©2006 Carlos Guestrin 43



Slack variables — Hinge loss

" A
Mminimizew W.W

4]:_ (WXJ—F[)) y] Z 1 ,\V/]
o _ =
+ =
o 4 K - =
% 4]:#* -

m If margin > 1, don’t care

m If margin < 1, pay linear
penalty
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Side note: What's the difference between

_ SVMs and Io?istic regression?

SVM: Logistic regression:
(woxj+b)y; > 1 ¢, Vi 1+ emlwxtd)
§ =20, Vj Log loss:
—INP(Y =1|z,w) = In(14e (WxF0)
.\\

o 2 4
©2006 Carlos Guestrin
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What about multiple classes?

O o
O (o) (o)
© ®
+ O © -
.:B:. =
':E:' [
T & T _ -
s
EII:'I:I |:||:||:| ] p—
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One against All

L earn 3 classifiers:

©2006 Carlos Guestrin
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Learn 1 classifier: Multiclass SVM

" J
Simultaneously learn 3 sets of weights

W(yj).Xj + ) > W(y/).Xj +6(0) 41, vy £ v, Y
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Learn 1 classifier: Multiclass SVM
" Jd
minimizew Zy wl¥) w(¥) -+ C’Zj &

© o
o oo (6)
= °°
:ﬂ:n O =
& -
T & ¥ = =
o = "
L
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What you need to know
" A
m Maximizing margin
m Derivation of SVM formulation
m Slack variables and hinge loss

m Relationship between SVMs and logistic regression
0/1 loss
Hinge loss
Log loss

m Tackling multiple class

One against All
Multiclass SVMs
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Acknowledgment
"

m SVM applet:
1 http://www.site.uottawa.ca/~gcaron/applets.htm

©2006 Carlos Guestrin
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