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Some Data
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!
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K-means

Randomly initialize k centers
µ(0) = µ1

(0),…, µk
(0)

Classify: Assign each point j∈{1,…m} to nearest 
center:

Recenter: µi becomes centroid of its point:

Equivalent to µi ← average of its points!
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What is K-means optimizing? 

Potential function F(µ,C) of centers µ and point 
allocations C:

Optimal K-means:
minµminC F(µ,C) 
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Does K-means converge??? Part 1

Optimize potential function:

Fix µ, optimize C
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Does K-means converge??? Part 2

Optimize potential function:

Fix C, optimize µ
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Coordinate descent algorithms

Want: mina minb F(a,b)
Coordinate descent:

fix a, minimize b
fix b, minimize a
repeat

Converges!!!
if F is bounded
to a (often good) local optimum 

as we saw in applet (play with it!)

K-means is a coordinate descent algorithm!
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(One) bad case for k-means

Clusters may overlap
Some clusters may be 
“wider” than others
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Gaussian Bayes Classifier 
Reminder
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Predicting wealth from age
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Predicting wealth from age
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Learning modelyear , 
mpg  ---> maker
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General: O(m2)
parameters
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Aligned: O(m)
parameters
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Aligned: O(m)
parameters
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Spherical: O(1)
cov parameters
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Spherical: O(1)
cov parameters
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Next… back to Density Estimation

What if we want to do density estimation with 
multimodal or clumpy data?
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But we don’t see class labels!!!

MLE:
max ∏j P(yj,xj)

But we don’t know yj’s!!!
Maximize marginal likelihood:

max ∏j P(xj) = max ∏j ∑i=1
k P(yj=i,xj)
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Special case: spherical Gaussians 
and hard assignments

If P(X|Y=i) is spherical, with same σ for all classes:

If each xj belongs to one class C(j) (hard assignment), 
marginal likelihood:

Same as K-means!!!
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The GMM assumption

• There are k components

• Component i has an associated 
mean vector µi

µ1

µ2

µ3
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The GMM assumption

• There are k components

• Component i has an associated 
mean vector µi

• Each component generates data 
from a Gaussian with mean µi and 
covariance matrix σ2I

Each data point is generated 
according to the following recipe: 

µ1

µ2

µ3
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The GMM assumption
• There are k components

• Component i has an associated 
mean vector µi

• Each component generates 
data from a Gaussian with 
mean µi and covariance matrix 
σ2I

Each data point is generated 
according to the following 
recipe: 

1. Pick a component at random: 
Choose component i with 
probability P(y=i)

µ2
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The GMM assumption
• There are k 

components

• Component i has an associated 
mean vector µi

• Each component generates 
data from a Gaussian with 
mean µi and covariance matrix 
σ2I

Each data point is generated 
according to the following 
recipe: 

1. Pick a component at random: 
Choose component i with 
probability P(y=i)

2. Datapoint ~ N(µi, σ2I )

µ2

x
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The General GMM assumption

µ1

µ2

µ3

• There are k 
components

• Component i has an associated 
mean vector µi

• Each component generates 
data from a Gaussian with 
mean µi and covariance matrix 
Σi

Each data point is generated 
according to the following 
recipe: 

1. Pick a component at random: 
Choose component i with 
probability P(y=i)

2. Datapoint ~ N(µi, Σi )
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Unsupervised Learning:
not as hard as it looks

Sometimes easy

Sometimes impossible

and sometimes in between

IN CASE YOU’RE 
WONDERING WHAT 
THESE DIAGRAMS ARE, 
THEY SHOW 2-d 
UNLABELED DATA (X
VECTORS) 
DISTRIBUTED IN 2-d 
SPACE. THE TOP ONE 
HAS THREE VERY 
CLEAR GAUSSIAN 
CENTERS
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Marginal likelihood for general case
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Special case 2: spherical 
Gaussians and soft assignments
If P(X|Y=i) is spherical, with same σ for all classes:

Uncertain about class of each xj (soft assignment), marginal 
likelihood:
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Unsupervised Learning:
Mediumly Good News
We now have a procedure s.t. if you give me a guess at µ1, µ2 .. µk,

I can tell you the prob of the unlabeled data given those µ‘s.

Suppose x‘s are 1-dimensional.

There are two classes; w1 and w2

P(y1) = 1/3     P(y2) = 2/3     σ = 1 .

There are 25 unlabeled datapoints

x1 =  0.608
x2 = -1.590
x3 = 0.235
x4 = 3.949

:
x25 = -0.712

(From Duda and Hart)
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Duda & Hart’s Example
We can graph the 

prob. dist. function 
of data given our 
µ1 and µ2
estimates.

We can also graph the 
true function from 
which the data was 
randomly generated.

• They are close.  Good.

• The 2nd solution tries to put the “2/3” hump where the “1/3” hump should 
go, and vice versa.

• In this example unsupervised is almost as good as supervised.  If the x1 .. 
x25 are given the class which was used to learn them, then the results are 
(µ1=-2.176, µ2=1.684).  Unsupervised got (µ1=-2.13, µ2=1.668). 
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Graph of 
log P(x1, x2 .. x25 | µ1, µ2 )

against µ1 (→) and µ2 (↑)

Max likelihood = (µ1 =-2.13, µ2 =1.668)

Local minimum, but very close to global at (µ1 =2.085, µ2 =-1.257)*

* corresponds to switching y1 with y2.

Duda & Hart’s Example

µ1

µ2
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Finding the max likelihood µ1,µ2..µk

We can compute  P( data | µ1,µ2..µk)
How do we find the µi‘s which give max. likelihood?

The normal max likelihood trick:
Set  ∂ log Prob (….) = 0

∂ µi

and solve for µi‘s.
# Here you get non-linear non-analytically-
solvable equations

Use gradient descent
Slow but doable

Use a much faster, cuter, and recently very popular 
method…
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Expectation 
Maximalization
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The E.M. Algorithm

We’ll get back to unsupervised learning soon.
But now we’ll look at an even simpler case with hidden 
information.
The EM algorithm

Can do trivial things, such as the contents of the next few slides.
An excellent way of doing our unsupervised learning problem, as 
we’ll see.
Many, many other uses, including inference of Hidden Markov 
Models (future lecture).

DETOUR
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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½ P(B) = µ P(C) = 2µ P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)

( )

10
1µ likeMax 

got class if So
6

 µ  likemax  Gives

0
µ32/1

3
µ2

2
µµ

LogP

0
µ

LogP SET µ, LIKE MAX FOR

=

++
+

=

=
−

−+=
∂

∂

=
∂

∂

dcb
cb

dcb

A B C D

14 6 9 10

Boring, but tru
e!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

We can answer this question circularly:

( )dcb
cb
++

+
=

6
 µ  

MAXIMIZATION

If we know the expected values of a and b
we could compute the maximum likelihood 
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

hbha
µ2

1
µ        

µ2
1

2
1

+
=

+
=

EXPECTATION If we know the value of µ we could compute the 
expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our
estimates of  µ and a and b.

Define    µ(t) the estimate of µ on the t’th iteration
b(t) the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
Convergence proof based on fact that Prob(data | µ) must increase or remain 
same between each iteration [NOT OBVIOUS]

But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

t µ(t) b(t)

0 0 0

1 0.0833 2.857

2 0.0937 3.158

3 0.0947 3.185

4 0.0948 3.187

5 0.0948 3.187

6 0.0948 3.187

In our example, 
suppose we had

h = 20
c = 10
d = 10

µ(0) = 0

Convergence is generally linear: error 
decreases by a constant factor each time 
step.
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Back to Unsupervised Learning of 
GMMs – a simple case

Remember:
We have unlabeled data x1 x2 … xm
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk) 
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EM for simple case of GMMs: The 
E-step

If we know µ1,…,µk      → easily compute prob. 
point xj belongs to class y=i

( ) ( )iyxxiy ijkj =⎟
⎠
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⎜
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σ2
1expµ...µ,p
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EM for simple case of GMMs: The 
M-step

If we know prob. point xj belongs to class y=i 
→ MLE for µi is weighted average

imagine k copies of each xj, each with weight P(y=i|xj):
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E.M. for GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like µ given our data’s class membership distributions

Just evaluate 
a Gaussian at 
xj( ) ( )iyxxiy ijkj =⎟
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E.M. Convergence

• EM is coordinate 
ascent on an 
interesting potential 
function

• Coord. ascent for 
bounded pot. func. →
convergence to a local 
optimum guaranteed

• See Neal & Hinton 
reading on class 
webpage

This algorithm is REALLY USED.  And in high dimensional state 
spaces, too.  E.G. Vector Quantization for Speech Data



E.M. for General GMMs
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Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class
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t
ij

t
itj xpxiy Σ∝= µλ

pi
(t) is shorthand for 

estimate of P(y=i)
on t’th iteration

M-step  
Compute Max. like µ given our data’s class membership distributions
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Just evaluate 
a Gaussian at 
xj
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration



52

After 4th iteration
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After 5th iteration



54

After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting 
Density 
Estimator
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Three 
classes of 
assay
(each learned with 
it’s own mixture 
model)
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Resulting 
Bayes 
Classifier



61

Resulting Bayes 
Classifier, using 
posterior 
probabilities to 
alert about 
ambiguity and 
anomalousness

Yellow means 
anomalous

Cyan means 
ambiguous
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What you should know

K-means for clustering:
algorithm
converges because it’s coordinate ascent

EM for mixture of Gaussians:
How to “learn” maximum likelihood parameters (locally max. like.) in 
the case of unlabeled data

Be happy with this kind of probabilistic analysis
Understand the two examples of E.M. given in these notes
Remember, E.M. can get stuck in local minima, and 
empirically it DOES
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K-means & Gaussian mixture models 
presentation contains material from excellent 
tutorial by Andrew Moore:

http://www.autonlab.org/tutorials/
K-means Applet:

http://www.elet.polimi.it/upload/matteucc/Clustering/tu
torial_html/AppletKM.html

Gaussian mixture models Applet:
http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html

http://www.autonlab.org/tutorials/
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html
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