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K-means
" A

1.

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!
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K-means
» B

m Randomly |n|t|aI|ze k centers
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m Classify: Assign each point je{1,...m} to nearest
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Equivalent to p, < average of its points!
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What is K-means optimizing?
" A
m Potential function F(u,C) of centers p and point

allocations C.ocation
/

/ Y 6
Fu,C) = Y Moy — a2 oss Aandh

m Opti ans:
min ming F(u,C)
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Does K-means converge??? Part 1

"
- €l ~ )
m Optimize potential function: F(me, )
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Does K-means converge??? Part 2
" S
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Coordinate descent algorithms

B mln mln F(p,C) = mln mén Z > il
i=1;5:C(j)=i

m Want: min, m|nb F(a b)
0 Coordlnate descent:
fix a, minimize b

fix b, minimize a
repeat

- COnvergesHl ﬂlﬁ Vo\ 5 -f—v(f'\Q 7/

if F is bounded
to a (often good) local optimum
m as we saw in applet (play with it!)

o V\V”‘" n C 7 Y,Lfm}
fog e min/
m K-means is a coordinate descent algorithm!




(One) bad case for k-means
"
m Clusters may overlap

- m Some clusters may be
\ “‘wider” than others




Gau33|an Bayes Classifier
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Predicting wealth from age

weath = poor wealth = rich
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Predicting wealth from age
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Learning modelyear ,
'mpg ---> maker
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General: O(m?)
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Aligned: O(m)

'parameters
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Aligned: O(m) 0 o
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Spherical: O(1)
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Next... back to Density Estimation

" JJEE
What if we want to do density estimation with
multlmodal or clumpy data?

_.| futon’s Graphics I |J|
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But we don’t see class Iabe_ls!*!m!m

" S
s MLE: (% y3)

acaymax [ 1; P(y;,x;)

> argmer log T RLyy P = fqmy Z ‘ﬁ%g\ |

Clmess L
m But we don't know y;'s!!! on Iy U o

'\ -
m Maximize marginal likelihood: ! o
“max Hj I_D_Q(J) = max Hj 2" P(yjzg(j) c Aarg R L)J E-& | 3(3_3
= ﬂn%mv(g (03 ;Z:‘ P(‘J\i:l,\(sx
v

(«>3 Sam (<
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Special case: spherical Gaussians
_and hard assignments
N

. 1 1 T —
lv=i)= —x. —pn) T Ux. = )| S
P ly=D Q)" 15 [ exp[ RS u)} Vi ’2‘>
m |f P(X]Y=i) is spherical, with same _c for all classes:
: 1 2
P(xj|y:|)ocexp[— - xj—uiH }

m |f each x; belongs to one class C(j) (hard assignment),

marglnal |Ike|lh00d ) o T
\C{\ H Z P(x y=1)cx Hexp{ X; _uC(J')HZ:l :301' “C’L‘(‘;"\‘”_’?
j=1 i=1 \AN— ’ bl
- Z I\Y\) —/Accb;\l?' L 0 (‘\
\
m Same as K-means!!! o1

—



The GMM assumption
" I

e There are k components

e Component / has an associated
mean vectof y;

o Hi1

@

o H3

22



S U O
The GMM assumption &o "o
" J
e There are k components

e Component /7 has an associate
mean vector y;

Ho
e Each component generates data \
: : — o Hi
from a Gaussian with mean x;and
covariance matrix o/ SF‘”iU“

- Ind

Each data point is generated

according to the following recipe:

23



The GMM assumption e 2
"
e There are k components l

e Component /has an associated
mean vector y;

. Each component generates
data from a Gaussian with

mean x;and covariance matrix
o?l

Each data point is generated
according to the following
recipe:

1. Pick a component at random:

Choose compaonent i with
probability A=}

24



The GMM assumption
" I

. There are k
components

e Component /has an associated
mean vector y;

. Each component generates
data from a Gaussian with

mean x;and covariance matrix
o?l

Each data point is generated
according to the following

recipe:

1. Pick a component at random:
Choose component i with

probability P(y=i) /
2. Datapoint ~ N(u, o21) >



The General GMM assumption
" S

e There are k
components

e Component /has an associated
mean vector y;

data from a Gaussian with
mean x;and covariance matrix
Py

/

e  Each component generates <./

Each data point is generated
according to the following
recipe:

$( U_ C‘\’\'\f] ((b\%l"-" 6\‘]’ reandoms
1. Pick a component at random: =~ “ith o preb. P(g.
Choose component i with

; tocetoa  atcwll. ,
probability P(y=r) / P\(L beah o7 Y JALSSin

2. Datapoint ~ N(x; 2;) 26



Unsupervised Learning: 37~ 75

: FRcover - A0,

not as hard as it looks e
SRR

Sometimes easy

|
[ ]
o0
o0
¢ IN CASE YOU'RE

. WONDERING WHAT
THESE DIAGRAMS ARE,
THEY SHOW 2-d
UNLABELED DATA (X
Sometimes impossible | VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP ONE
HAS THREE VERY
CLEAR GAUSSIAN
CENTERS

| and sometimes in between

27



Marginal likelihood for general case
" S

. 1 1 T
P(x;ly=1= (27)™" Iz Tk exp{_a(xj _ui) b2} (Xj _ui)}

r Marglnal |Ike|lh00d

[1Px)= HZF’(x y=i)

e —
_lemzmm” AT p{_%( j_"')TEil(X"_”')}P(y:”
= —————

PQ(\")—‘\ P(“‘)-O

28



Special case 2: spherical
_ Gaussians and soft assignments
JE o

m If P(X|Y=i) is spherical, with same o for all classes:
P(x; | y:i)ocexp[—2 :

1 2
|

m Uncertain about class of each x; (soft assignment), marginal
erhhood

HZP(X y = I)ocHZeXp{
i=1 @jj 1 i=1

g locb Z ¢ 25 40 M"J?jﬂ

=

X, —uiﬂp(y =)
lsy

29



Unsupervised Learning:

. Mediumly Good News

We now have a procedure s.t. if you give me a guess at i, H,.. U,

| can tell you the prob of the unlabe@data given those p's.

- —e————

Suppose x's are 1-dimensional.
There

(From Duda and Hart)

There are 25 unlabeled datapoints

x; = 0.608
X,= -1.590
X;= 0.235
Xx,= 3.949

X25: '0.712




Duda & Hart’ s Example

We can graph the ;’ M(
| prob. dist. function [} (”‘ Mm‘r

of data given our

; and [y
estimates.

X\[U&;
We can also graph the
true function from
which the data was
randomly generated.

e They are close. Good.

e The 2Md solution tries to put the “2/3” hump where the “1/3” hump shoxld
go, and vice versa.

» In this example unsupervised is almost as good as supervised. If the x; ..
X, are given the class which was used to learn them, then the results are
(L,=-2.176, p~1.684). Unsupervised got (u,—-2.13, u—1.668).

31



Duda & Hart's Example »* R (Score)

Graph of

log P(X;, X, .. Xo5 | My, My )
against 1, (—) and p, (T)

Max likelihood = (1, =-2.13, u, =1.668)
Local minimum, but very close to global at (1, =2.085, p,=-1.257)*

* corresponds to switching y, with y,.

32



Finding the max likelihood [ 4,4,..M,

"
We can compute P(data | py,M,..Hy)
How do we find the p;'s which give max. likelihood?

m The normal max likelihood trick:

Set 0 log Prob (....)
g
and solve for p's.

# Here you get non-linear non-analytically-
solvable equations

m Use gradient descent
Slow but doable

m Use a much faster, cuter, and recently very popular
method... 33



Expectation
Maximalization

34



T2 E.M. Algorithm

m \We'll get back to unsupervised learning soon.

m But now we'll look at an even simpler case with hidden
information.

m The EM algorithm

Can do trivial things, such as the contents of the next few slides.

An excellent way of doing our unsupervised learning problem, as
we’ll see.

Many, many other uses, including inference of Hidden Markov
Models (future lecture).

35



Shodad MCE < P04

Silly Example w

o

Let events be “grades in a class’ /
w, = Gets an A P(A) =Y
W

2 o hed 25
=Getsa B P(B)=u < /(A

I\Ai
=Getsa C P(C)=2p/,( for
=Getsa D P(D) = 72-3u

(Note 0 < p <1/6)
Assume we want to estimate py from data. In a given class there were
a As
b B’s
c C’s
d D’s

What's the maximum likelihood estimate of y given a,b,c,d ?

fe s pla b, d M)
(%2 \”‘
o= mr»)mml K\Z\ < <2}’\\ /\



Trivial Statistics
"
PA =% PB)=py P(C)=2u P(D)="-3u
P(ab,c,d | p) = K(2)2(W)*(2u)°(72-3p)¢
log P( a,b,c,d| y) =log K+ alog %2 + blog y + clog 2u + dlog (72-3M)

FOR MAX LIKE p, SET 2208F _ /

ou
oLogP :B+2C_ 3d _ 0
ol w 2u 1/2-3p
Gives max likd = —2+C
6(b+c+d)
So if class got
A B C D
14 6 9 10

Max like




Same Problem with Hidden Information

" A
Someone tells us that AM'&
be~
Number of High grades (A’'s + B's) =/ Afz'\ ‘ﬁmj
N> T BS) =1 -
Number of C's =C At

Number of D’s =

What is the max. like estimate of y now?

o o (u,b,¢,4 | )

VN AL axb=h

REMEMBER
P(A) = 22
P(B) =u
P(C) = 2y
P(D) = -3y

38



Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’'s + B's) = A

Number of C’s = c

Number of D’s = q

What is the max. like estimate of y now? h=
=

We his gy_e;twny:

EXPECTATION

If we know the value of y we cou

\Y

expected value of aand b

Since the ratio a:b should be the same as the ratio ¥2 : n

MAXIMIZATION

If we know the expected values of 2and 4
we could compute the maximum likelihood

value of p

REMEMBER
P(A) = 15
P(B) =u
P(C) = 2y
P(D) = ¥4-3 PM)c )
(& = | P(R)z
. M & (R)e
- 10 = Z_ . |O
2
s
ompute the
b=- )
ple




E.M. for our Trivial Problem revee
P(A) = %
" B o
. : P(C) = 2u
We begin with a guess for p P(D) = ¥%-3p
We iterate between EXPECTATION and MAXIMALIZATION to improve our
estimates of yand aand b.
Define p® the estimate of p on the t'th iteration
® the estimate of b on t'th iteration X 04 ‘(_1 A /M/th’\éb’ CTQC L{S
¢
n'® =initial guess I I \
J
. 2> Y /‘l\‘(‘g
eest.of pgivenb BLS" M
Continue iterating until converged. pos 0’( 5‘5 .

Good news: Converging to local optimum is assured. 10
Bad news: 1 said “local™ optimum.



E.M. Convergence
" I

m  Convergence proof based on fact that Prob(data | u) must increase or remain
same between each iteration not osvious)

m Butit can never exce@ [OBVIOUS]
So it must therefore converge (osvious

In our example,
suppose we had

h =20
c=10 >
d=10
IJ(O):O

Convergence is generally linear: error

decreases by a constant factor each time
step.




Back to Unsupervised Learning of
GMMs — a simple case
"

Remember:
We have unlabeled data x; X, ... X,
We know there are k classes
We know P(y,) P(y,) P(y3) ... P(y,)
We don’t know piy Wy ..

We can write P( data | py.... 1)
= p(xl...Xm‘ul...uk)



EM for simple case of GMMs: The

] E-steg

m |[f we know p,..., v, — easily compute prob.
point x; belongs to class y=i

26°

plY = X bt ) o eXp(— L, —uinjP(y =i)

43



EM for simple case of GMMs: The

] M-steg

m If we know prob. point x; belongs to class y=i

— MLE for p, is weighted average
imagine k copies of each x;, each with weight P(y=i|x):

i:P(y:i‘xj)xj
gp(yzi‘xj)

J
J

W =

44



E.M. for GMMs

E-step

Compute “expected” classes of all datapoints for each class L EVEIVERE
a Gaussian at
: 1 2 : Xj
ply = X4y, o exp| - Sl Ply =)
M-step

Compute Max. like u given our data’s class membership distributions
Z‘P(y = i‘xj)xj
J

iP(yzi‘Xj)

J=1

W =

45



E.M. Convergence <
"

e EM is coordinate
ascent on an
interesting potential
function 4

e Coord. ascent for
bounded pot. func. —

convergence to a local
optimum guaranteed 9

e See Neal & Hinton
reading on class
webpage

m This algorithm is REALLY USED. And in high dimensional state

spaces, too. E.G. Vector Quantization for Speech Data -



E.M. fOr General GMMS pY is shorthand for

estimate of P(y=i)
Ilterate. On the t'th iteration let our estimates be on t'th iteration

= {10, KO ... nO, 21(0, 22(0 Zk(t), p,®, p,O® ... p,®}

E-step
Compute “expected” classes of all datapoints for each class

_ (1) () <« (1) Z Just evaluate
P(y B I‘XJ’A‘)OC P; p(xj"ui 2 ) a Gaussian at

Xj

M-step

Compute Max. like u given our data’s class membership distributions

Sely=ipoals o ERl =i Al -l -t

(t+1 ¥ t+1)

3 zP( =ilx;.4) ! 2 Ply =i 4)

47



Gaussian Mixture Exampl

e: Ste

o

N



After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration
" I




After o6th iteration
" I




After 20th iteration




Some Bio Assay data

56



GMM clustering of the assay data
" S

57



"
Resulting
Density

Estimator

r 4

-




Three
classes of
assay

(each learned with
it's own mixture
model)

59
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Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous




What you should know
" A
m K-means for clustering:

algorithm
converges because it's coordinate ascent

m EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in
the case of unlabeled data

m Be happy with this kind of probabilistic analysis
m Understand the two examples of E.M. given in these notes

m Remember, E.M. can get stuck in local minima, and
empirically it DOES

62
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" A
m K-means & Gaussian mixture models

presentation contains material from excellent
tutorial by Andrew Moore:

http://www.autonlab.org/tutorials/
m K-means Applet:

http://www.elet.polimi.it/upload/matteucc/Clustering/tu
torial html/AppletKM.html

m Gaussian mixture models Applet:

http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html
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