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Announcements
" A
m Recitations stay on Thursdays

5-6:30pm in Wean 5409
This week: Decision Trees and Boosting

m Homework due...

Tomorrow by 10:30am (class time) to Monica Hopes,
Wean Hall 4616
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Fighting the bias-variance tradeoff
" J
m Simple (a.k.a. weak) learners are good

e.g., haive Bayes, logistic regression, decision stumps
(or shallow decision trees)

Low variance, don’t usually overfit

m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!
But often yes...
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Voting

m' Instead of learning a single (weak) classifier, learn many weak classifiers

that are good at different parts of the input space
m Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a particular part of the space
On average, do better than single classifier!

m But how do you ??7?
force classifiers to learn about different parts of the input space?

weigh the votes of different classifiers?
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BOOStiﬂg [Schapire, 1989]
" A

m |dea: given a weak learner, run it multiple times on
(reweighted) training data, then let learned classifiers vote

m On each iteration t:

weight each training example by how incorrectly it was classified
Learn a hypothesis — h,
A strength for this hypothesis — a,

m Final classifier:

m Practically useful
m Theoretically interesting
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Learning from weighted data
" J

m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset

D(i) — weight of i th training example (x!,y")
Interpretations:

= ith training example counts as D(i) examples
= If | were to “resample” data, | would get more samples of “heavier’ data points

m Now, in all calculations, whenever used, i th training example counts as

D(i) “examples”
e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted count
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Given: (21,91),-- -, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize Dy (i) = 1/m.
Fort=1,...,T:

e Train base learner using distribution D.

e Get base classifier h; : X — R.

e Choose a; € R.

e Update:

Dy (i) exp(—ouyihi(2i))
4t

D1 (1) =
where Z; is a normalization factor

m
Zy = Y  Di(i) exp(—ay;hi(x;))
=t
Output the final classifier: ‘

T
H(z) = sign (Z atht(m)) :

t=1

Figure 1: The boosting algorithm AdaBoost.
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Given: (21,91),-- -, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize Dy (i) = 1/m.
Fort=1,...,T:

Train base learner using distribution Dy.
Get base classifier h; : X — R. 1 — g
In

Choose o € R. < ap = %
Update:

D¢(7) exp(—awyihi(z;))

Diyq(i) = Z

et = Piup,[x" # y"

i 1D 0. z Di(8)5(hi(:) # v2)

€t —
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
" A

Training error of final classifier is bounded by:

1 ™ 1 &
— 3 OCH (i) # i) < 37 exp(—yif (@)
n(f(x))
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
" A

Training error of final classifier is bounded by:

1 1
\ N /s 7171/ N\ / \ - N N 7 4 \\ TT —~
— ) 0(H(xy) #yi) < — ) exp(—y;f(x;)) 1At
m . 4 m -4
t—1 1—1
Where L0\ — \ " L /- IT/( - — i mnnl £ 0\
_V[\‘.L')—L(Xflbt\.b},ﬂ\d;}—bbgl \/\J/})
t

Zi= 3 Di(i) exp(—ashi(e)
=1
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
" J
Training error of final classifier is bounded by:

.
LS SH () £ ) < 2 Y exo(—yif (o) = [[
m;— i t

m

where f(2) = 3" achi(2); H(z) = sign(f(2))
4

If we minimize []; Z,, we minimize our training error

We can tighten this bound greedily, by choosing ¢, and h, on each
iteration to minimize Z,

Zi= " Dy(i) exp(—amihe(z:)
1=1
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]

We can minimize this bound by choosing ¢, on each iteration to minimize Z,

Zi= " Dy(i) exp(—amihe(z:)
1=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1 —
oztzéln( Et)
€t

You'll prove this in your homework! ©
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Strong, weak classifiers
" J
m If each classifier is (at least slightly) better than random

g <0.5

m AdaBoost will achieve zero training error (exponentially fast):

m T
> 6(H(x) #yi) <]] 2 <exp (2 > (1/2- €t)2)
t t=1

1
m,—1

m Is it hard to achieve better than random training error?
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Boosting results — Digit recognition

[Schapire, 1989]

10 100 1000
# rounds

m Boosting often
Robust to overfitting
Test set error decreases even after training error is zero
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Boosting generalization error bound
[Freund & Schapire, 1996]
" S

~ Td
erroriest(H) < erroriqin(H) + O ( )
m

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier

m M — number of training examples
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Boosting generalization error bound
[Freund & Schapire, 1996]
" S

~ Td
erroriest(H) < erroriqin(H) + O ( )
m

m Contradicts: Boosting often
Robust to overfitting
Test set error decreases even after training error Is zero

m Need better analysis tools
we’ll come back to this later in the semester

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier

m M — number of training examples
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Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

0 5 10 15 20 25 30 0 5 10 15 20 25 30
boosting stumps boosting C4.5
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AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting and Logistic Regression
"

Logistic regression assumes:

1
P(Yy =1X) =
¥ =1 = e (@)
And tries to maximize data likelihood:
m 1

P(data|H) = || — . —
—1 1+ exp(—y; f(z;))

Equivalent to minimizing log loss

5™ In(1 + exp(—yif ()

1=1
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Boosting and Logistic Regression
"

Logistic regression equivalent to minimizing log loss
3" In(1 + exp(—y;f(x:)))

1=1

Boosting minimizes similar loss function!!

=Y exp(—yif () = [ 2
() t

Both smooth approximations of 0/1 loss!

©2006 Carlos Guestrin
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Logistic regression and Boosting
"

Logistic regression: Boosting:

m Minimize loss fn m Minimize loss fn

Z; IN(1 + exp(—y; f(x;))) Z exp(—y; f(;))
=1

m Define m Define
F@) =Y wye; f@) =3 arh(a)
g where h(x)) defined
where x; predefined dynamically to fit data

= Weights o, learned
Incrementally
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What you need to know about Boosting
" S

m Combine weak classifiers to obtain very strong classifier

Weak classifier — slightly better than random on training data

Resulting very strong classifier — can eventually provide zero training
error

m AdaBoost algorithm

m Boosting v. Logistic Regression
Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)

m Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier
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OK... now we'll learn to pick those

_ _darned parameters. ..

m Selecting features (or basis functions)
Linear regression
Naive Bayes
Logistic regression
m Selecting parameter value
Prior strength
= Naive Bayes, linear and logistic regression
Regularization strength
= Naive Bayes, linear and logistic regression
Decision trees
» MaxpChance, depth, number of leaves
Boosting
= Number of rounds
m  More generally, these are called Model Selection Problems
m Today:
Describe basic idea

Introduce very important concept for tuning learning approaches: Cross-Validation
©2006 Carlos Guestrin 23




Test set error as a function of
model complexity
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Simple greedy model selection algorithm

" A
m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic:

Start from empty (or simple) set of
features Fy = &

Run learning algorithm for current set
of features F,

= Obtain h,

Select next best feature X

= .9, X that results in lowest training error
learnef when learning with F, U {X;}

Fip — F U {X}
Recurse
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Greedy model selection
"
m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(X|Y)

Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

m Only a heuristic!

But, sometimes you can prove something cool about it

m e.d., [Krause & Guestrin '05]: Near-optimal in some settings that
Include Naive Bayes

m There are many more elaborate methods out there
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}

When do you stop???

m When training error is low enough?

©2006 Carlos Guestrin 27



Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

m ‘Whentraining-errorislow-enedgh?—

m \When test set error is low enough?
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Validation set
" A

m Thus far: Given a dataset, randomly split it into two parts:
Training data — {X4,..., Xntain}
Test data — {Xy,..., Xntest)

m But Test data must always remain independent!
Never ever ever ever learn on test data, including for model selection

m Given a dataset, randomly split it into three parts:
Training data — {X4,-.., Xntraint
Validation data — {X4,..., Xnvaid}
Test data — {Xy,..., Xntest)
m Use validation data for tuning learning algorithm, e.g., model
selection
Save test data for very final evaluation
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

m ‘Whentraining-errorislow-enedgh?—
m \Whentestseterrer-istew-enough?—

m \When validation set error is low enough?
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

When-training-errer-is-lew-eneugh?—

H

H

m ‘Whenvalidatioh-seterrorislow-enough?

m Man!!! OK, should | just repeat until | get tired???

| am tired now...

No, “There is a better way!”
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(LOO) Leave-one-out cross validation
" S

m Consider a validation set with 1 example:
D — training data
D\i — training data with i th data point moved to validation set
m Learn classifier h; with D\i dataset
m Estimate true error as:
0 if hy, classifies ith data point correctly
1 if hy, iIs wrong about i th data point
Seems really bad estimator, but wait!
m LOO cross validation: Average over all data points i:

For each data point you leave out, learn a new classifier hp,
Estimate error as:

m . .
errorLo0 = — > 1 (hp\z'(XZ) 7 yz)
=1

©2006 Carlos Guestrin 32



LOO cross validation is (almost)
unblased estimate of true error!
S

m  When computing LOOCV error, we only use m-1 data points
So it’s not estimate of true error of learning with m data points!
Usually pessimistic, though — learning with less data typically gives worse answer

m LOO is almost unbiased!
Let error,, . ., b€ true error of learner when you only get m-1 data points
In homework, you’ll prove that LOO is unbiased estimate of error

Eplerrorpool = ETTOTtrue,m—1

true,m-1-

m Great news!
Use LOO error for model selection!!!
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

n ‘When-tralning-erroristow-enough?—

m \Whentestseterrer-istew-enough?—

. W] idat o he
m STOP WHEN error oo IS LOW!!
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Using LOO error for model selection
" S
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Computational cost of LOO
" A
m Suppose you have 100,000 data points

m You implemented a great version of your learning
algorithm

Learns in only 1 second

m Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)
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Solution 2 to complexity of computing LOO:

(More txﬁicala Use k-fold cross validation

m Randomly divide training data into k equal parts

m Foreachi
Learn classifier hyp; using data point not in D,
Estimate error of hy,; on validation set D;:
errorp, = k Z 1 (hp\pi(xj) = yj>
(x7,y/)ED;
m k-fold cross validation error is average over data splits:

1 k
BTTOTk_fOld == Z Z 6?"7"0?"1)2.
Vi=1

m Kk-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k
Usually, k =10 ©
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Regularization — Revisited
" J
m Model selection 1: Greedy
Pick subset of features that have yield low LOO error

m Model selection 2: Regularization
Include all possible features!
Penalize “complicated” hypothesis
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2 +3.1 X —0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg m“i’nz (t(xj) — Zwihi(xj)) + )\wa
j g t=1
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Other regularization examples
"

m Logistic regression regularization
Maximize data likelihood minus penalty for large parameters
N\ V. —~7 T a N\ v~ 1 2
argmax ) In P(y’|x7, w) — A} wj
] (/

Biases towards small parameter values

m Naive Bayes regularization
Prior over likelihood of features
Biases away from zero probability outcomes

m Decision tree regularization
Many possiblilities, e.g., Chi-Square test and MaxPvalue parameter
Biases towards smaller trees
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How do we pick magic parameter?
" S
Cross Validation!!!!

A in Linear/Logistic Regression
(analogously for # virtual examples in Naive Bayes,

MaxPvalue in Decision Trees)
©2006 Carlos Guestrin 41



Regularization and Bayesian learning
" S

/n{T'IT | V Y\
F\ /

- x P(Y | X, w)p(w)
| A 7.[‘. A i 5 \.l. I J‘.7 / \

m \We already saw that regularization for logistic

regression corresponds to MAP for zero mean,
Gaussian prior for w

m Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naive Bayes: Directly defined as prior over parameters
Decision trees: Trickier to define... but we’ll get back to this
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Occam’s Razor

" A
m William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of
entities required to explain anything.”

m Regularization penalizes for “complex explanations”

m Alternatively (but pretty much the same), use Minimum
Description Length (MDL) Principle:
minimize length(misclassifications) + length(hypothesis)

m |length(misclassifications) — e.g., #wrong training examples
m |length(hypothesis) — e.g., size of decision tree

©2006 Carlos Guestrin 43



Minimum Description Length Principle

" J
m MDL prefers s aII hypothesis that fit data well:

L-,(D|h) — description length of data under code C, given h
= Only need to describe points that h doesn’t explain (classify correctly)

L,(h) — description length of hypothesis h

m Decision tree example

L,(D]h) — #bits required to describe data given h
= If all points correctly classified, L-,(D|h) =0

L,(h) — #bits necessary to encode tree
Trade off quality of classification with tree size
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Bayesian interpretation of MDL Principle

"

m MAP estimate hyap = argmax [P(D | h)P(h)]

argmax [log> P(D | h) + logs P(h)]
h

argmin [—logpy P(D | h) — logs P(h)
h

m Information theory fact:
Smallest code for event of probability p requires —log,p bits

m MDL interpretation of MAP:
-log, P(DJh) — length of D under hypothesis h
-log, P(h) — length of hypothesis h (there is hidden parameter here)

MAP prefers simpler hypothesis:
m minimize length(misclassifications) + length(hypothesis)

m In general, Bayesian approach usually looks for simpler
nypothesis — Acts as a regularizer
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What you need to know about Model Selection,

Regularization and Cross Validation
" J
m Cross validation
(Mostly) Unbiased estimate of true error
LOOCV is great, but hard to compute
k-fold much more practical
Use for selecting parameter values!
m Model selection
Search for a model with low cross validation error
m Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach
m Minimum description length

Information theoretic interpretation of regularization
Relationship to MAP
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