

Boosting Simple Model Selection Cross Validation Regularization

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 8th, 2006

Announcements

- Recitations stay on Thursdays

- 5-6:30pm in Wean 5409
 - This week: Decision Trees and Boosting

- **Homework due...**

- ~~Tomorrow by 10:30am (class time) to Monica Hopes, Wean Hall 4616~~

Fighting the bias-variance tradeoff

■ Simple (a.k.a. weak) learners are good

- e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
- Low variance, don't usually overfit

■ Simple (a.k.a. weak) learners are bad

- High bias, can't solve hard learning problems

■ Can we make weak learners always good???

- **No!!!**

- **But often yes...**

Voting

(ensemble methods)

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are good at different parts of the input space

- Output class:** (Weighted) vote of each classifier

- Classifiers that are most “sure” will vote with more conviction
- Classifiers will be most “sure” about a particular part of the space
- On average, do better than single classifier!

t-th weak classifier $h_t(x) \in [-1, +1]$

Voting: $H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right)$

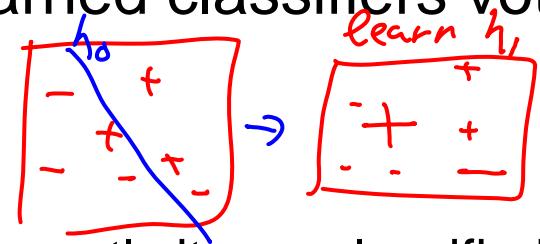
↑ weight

- But how do you ???**

- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote



- On each iteration t :
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier:
$$H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right)$$

- Practically useful
- Theoretically interesting

Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - $D(i)$ – weight of i th training example (x^i, y^i)
 - Interpretations:
 - i th training example counts as $D(i)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points
- Now, in all calculations, whenever used, i th training example counts as $D(i)$ “examples”
 - e.g., MLE for Naïve Bayes, redefine $Count(Y=y)$ to be weighted count

$$\hat{P}(Y=y) = \frac{\text{Count}(Y=y)}{\# \text{ data points}}$$

normally

$$\hat{P}_D(Y=y) = \frac{\sum_{i=1}^m D(i) \mathbb{I}(y^i = y)}{\sum_{i=1}^m D(i)}$$

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$
Initialize $D_1(i) = 1/m$. *uniform*

For $t = 1, \dots, T$:

- Train base learner using distribution D_t . *learn classifier*
- Get base classifier $h_t : X \rightarrow \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. *correct \rightarrow low weight*
incorrect \rightarrow high weight
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

generate h_1, \dots, h_T

Output the final classifier:

$$H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right).$$

Figure 1: The boosting algorithm AdaBoost.
©2006 Carlos Guestrin

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$.

For $t = 1, \dots, T$:

- Train base learner using distribution D_t .
- Get base classifier $h_t : X \rightarrow \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$\epsilon_t \approx 0 \Rightarrow \alpha_t$ high

$\epsilon_t \approx 0.5 \Rightarrow \alpha_t \approx 0$

$$\epsilon_t = P_{i \sim D_t} [\mathbf{x}^i \neq y^i]$$

$$\epsilon_t = \frac{1}{\sum_{i=1}^n D_t(i)} \sum_{i=1}^n D_t(i) \delta(h_t(x_i) \neq y_i)$$

$\epsilon_t \rightarrow$ ~~error~~ on
weighted training data

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Training error of final classifier is bounded by:

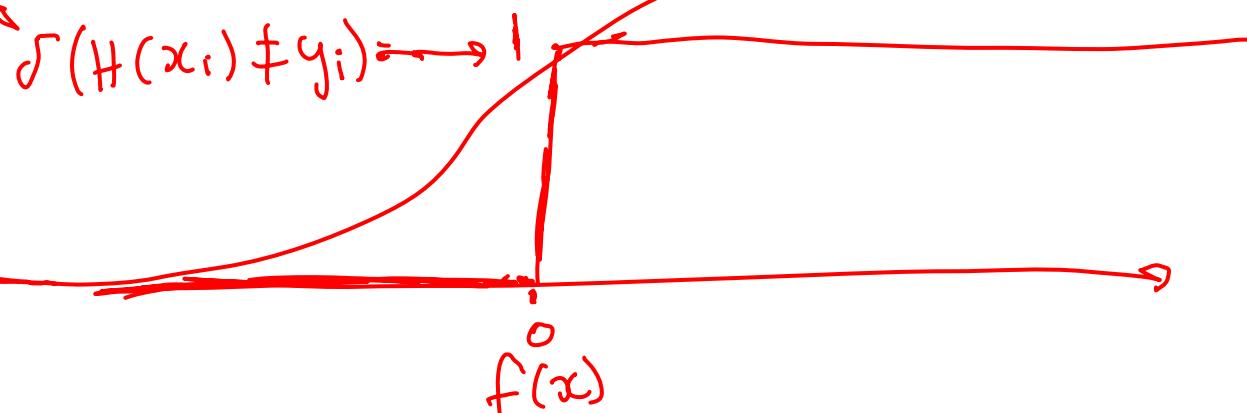
$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i))$$

0/1 loss

approx. by exp function

Where $f(x) = \sum_t \alpha_t h_t(x)$, $H(x) = \text{sign}(f(x))$

if $y_i = -1$



What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where $f(x) = \sum_t \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Normalization

by the beauty of
telescopic series!!

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_i \exp(-y_i f(x_i)) = \prod_t Z_t$$

want f_t make small

make small!

Where $f(x) = \sum_t \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t .

*pick α_t
that min*

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

fix $\alpha_1, \dots, \alpha_{t-1}$

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

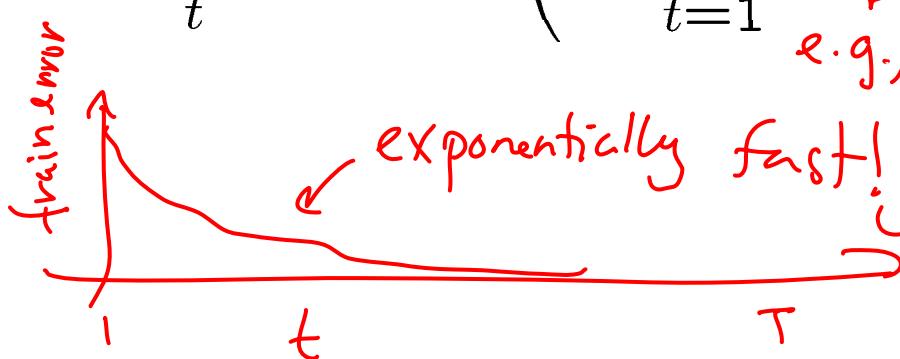
\Rightarrow make Z_t as small as possible

You'll prove this in your homework! ☺

Strong, weak classifiers

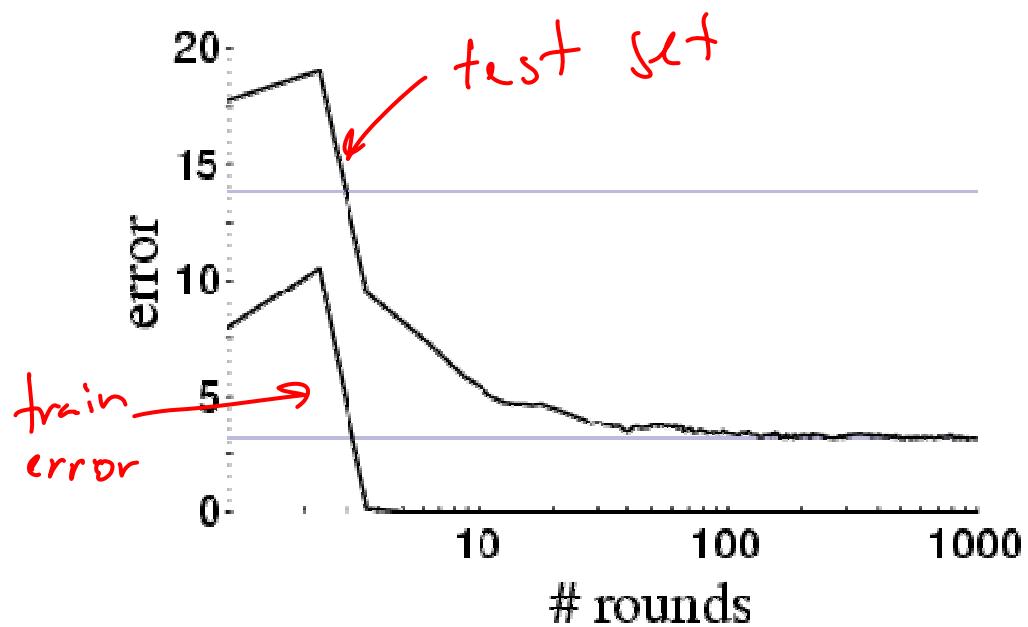
- If each classifier is (at least slightly) better than random
 - $\epsilon_t < 0.5$ ↗ e.g., $\epsilon_t = 0.45$ if $\epsilon_t < 0.5$
 $e^{-2(1/2 - \epsilon_t)^2} < 1$
- AdaBoost will achieve zero *training error* (exponentially fast):
$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \prod_t Z_t \leq \exp \left(-2 \sum_{t=1}^T (1/2 - \epsilon_t)^2 \right)$$

if $\epsilon_t \leq 0.45 \ \forall t$:
 $\hookrightarrow = \prod_{t=1}^T e^{-2(1/2 - \epsilon_t)^2}$
 $\epsilon_t = 0.05$


- Is it hard to achieve better than random training error? Yes & No

Boosting results – Digit recognition

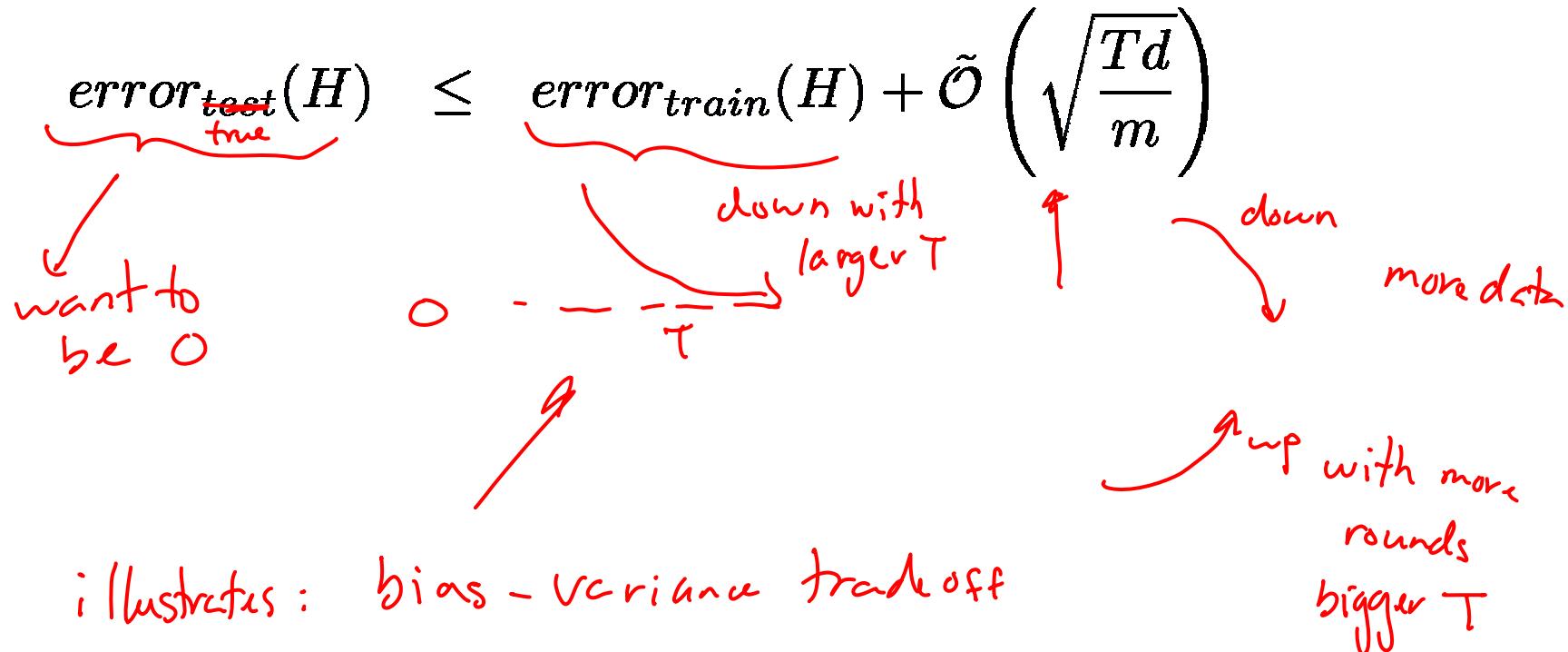
[Schapire, 1989]



- Boosting often *no always!!!*
 - Robust to overfitting
 - Test set error decreases even after training error is zero

Boosting generalization error bound

[Freund & Schapire, 1996]



- T – number of boosting rounds
- d – VC dimension of weak learner, measures complexity of classifier
- m – number of training examples

Boosting generalization error bound

[Freund & Schapire, 1996]

$$\text{error}_{\text{test}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{O} \left(\sqrt{\frac{Td}{m}} \right)$$

~~test~~
true

■ Contradicts: Boosting often

- Robust to overfitting *big error with large T*
- Test set error decreases even after training error is zero

■ Need better analysis tools

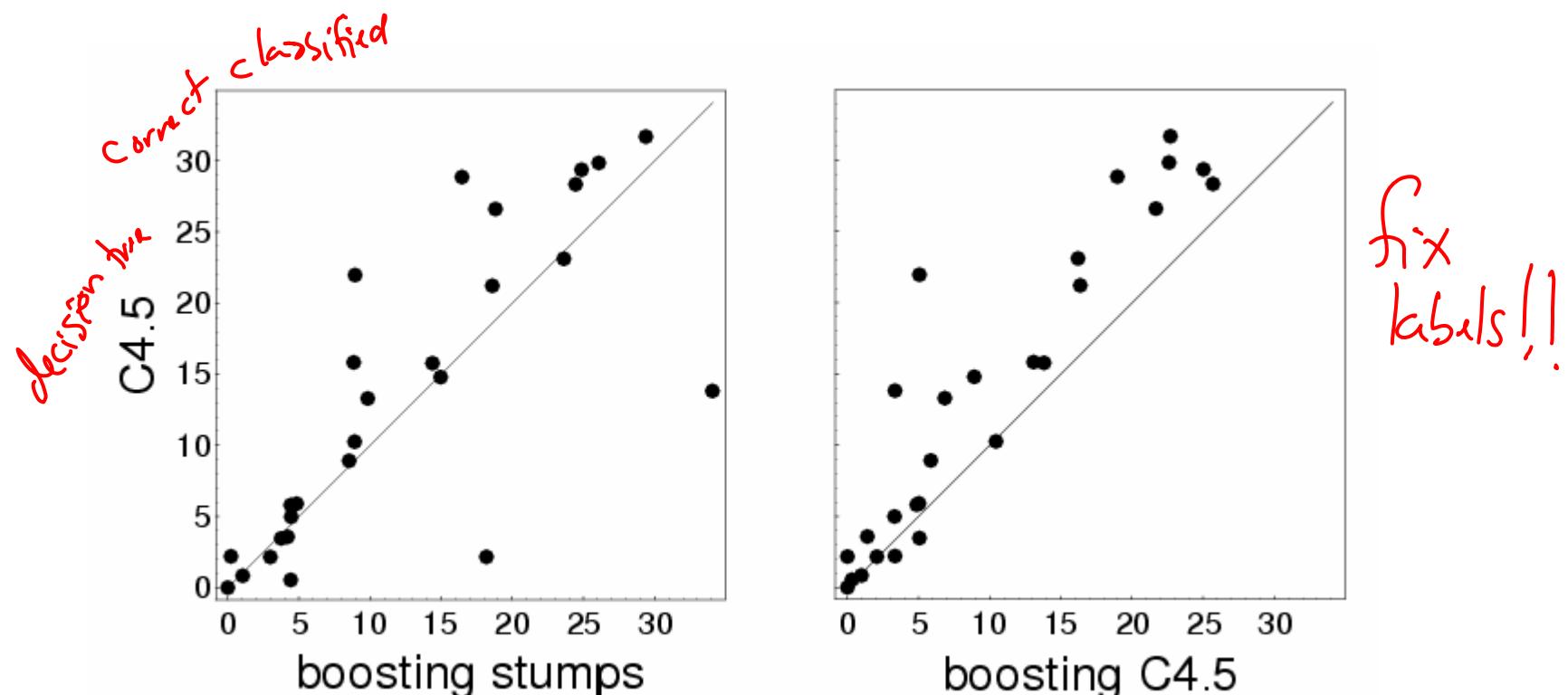
- we'll come back to this later in the semester

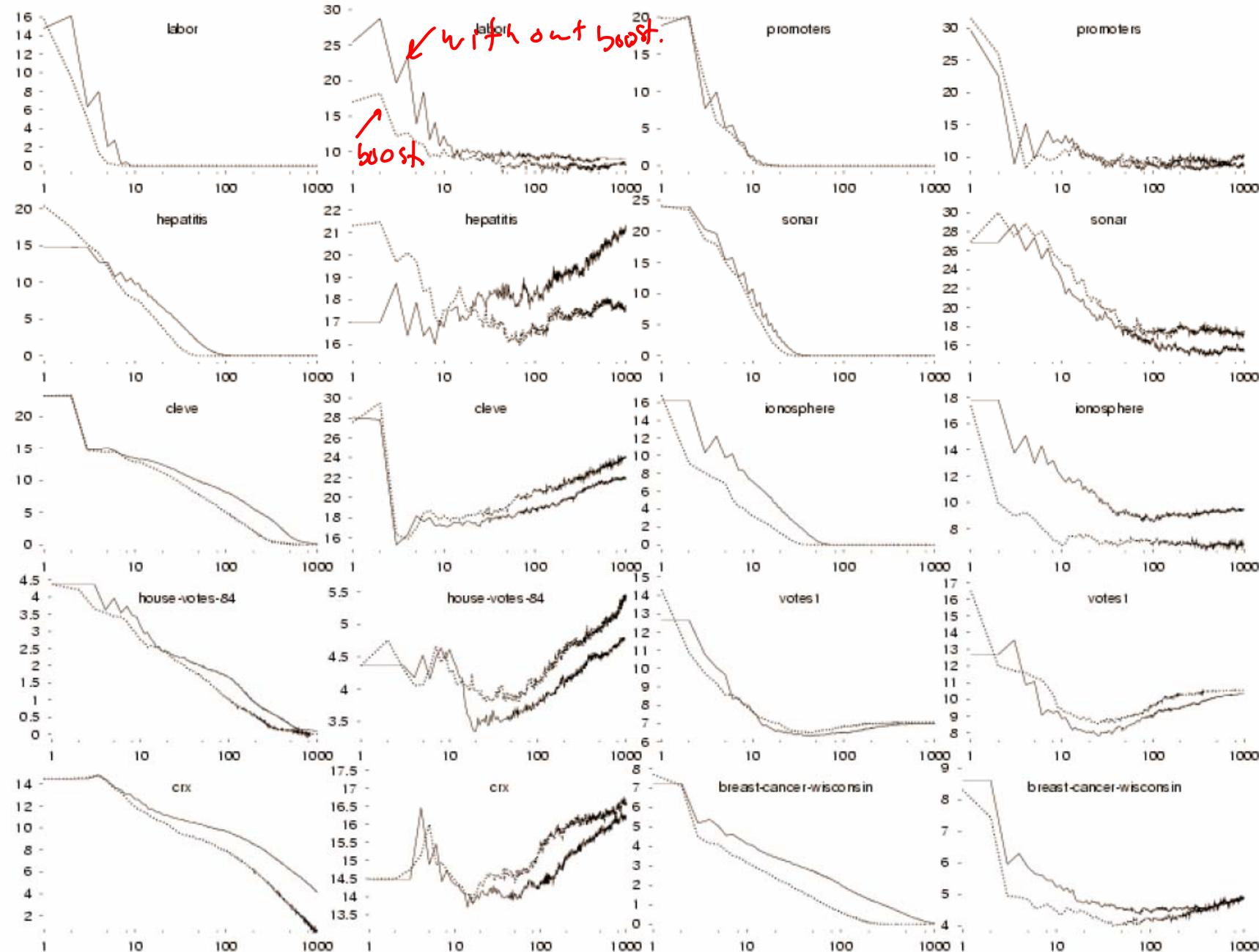
- T – number of boosting rounds
- d – VC dimension of weak learner, measures complexity of classifier
- m – number of training examples

Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets





Boosting and Logistic Regression

$$f(x) = \sum_i w_i x_i$$

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$

And tries to maximize data likelihood:

$$P(\text{data}|H) = \prod_{i=1}^m \frac{1}{1 + \exp(-y_i f(x_i))}$$

Equivalent to minimizing log loss

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

Boosting and Logistic Regression

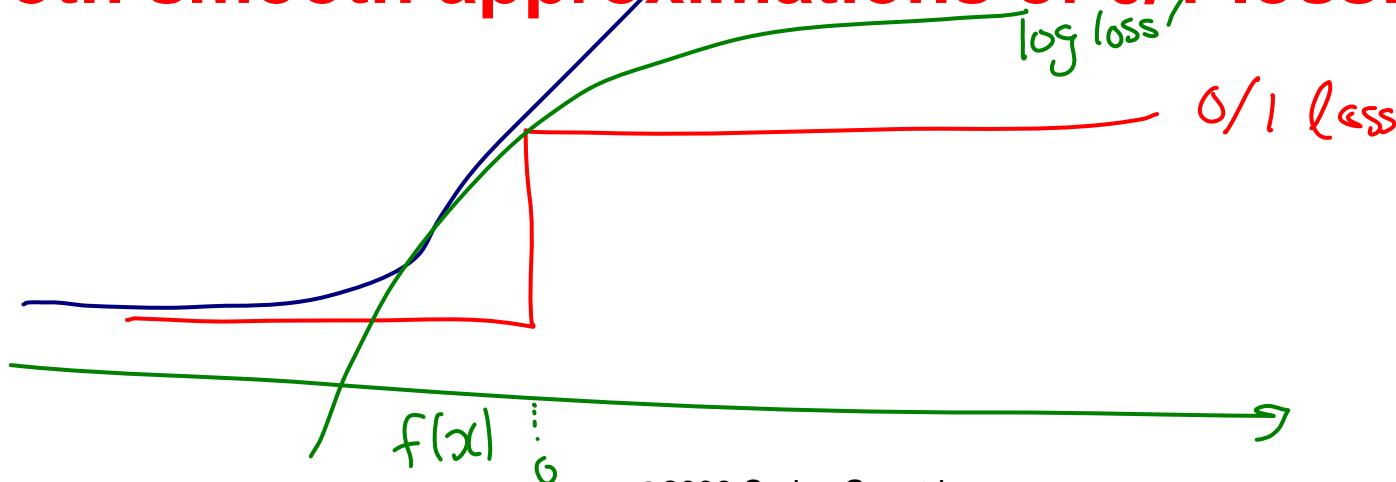
Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

Boosting minimizes similar loss function!!

$$\frac{1}{m} \sum_i \exp(-y_i f(x_i)) = \prod_t^{booster} Z_t$$

Both smooth approximations of 0/1 loss!



Logistic regression and Boosting

Logistic regression:

- Minimize loss fn

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

- Define

$$f(x) = \sum_j w_j x_j$$

always linear in w
where x_j predefined

Boosting:

- Minimize loss fn

$$\sum_{i=1}^m \exp(-y_i f(x_i))$$

- Define

$$f(x) = \sum_t \alpha_t h_t(x)$$

where $h_t(x_i)$ defined
dynamically to fit data

- Weights α_j learned
incrementally

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier

OK... now we'll learn to pick those darned parameters...

■ Selecting features (or basis functions)

- Linear regression
- Naïve Bayes
- Logistic regression

■ Selecting parameter value

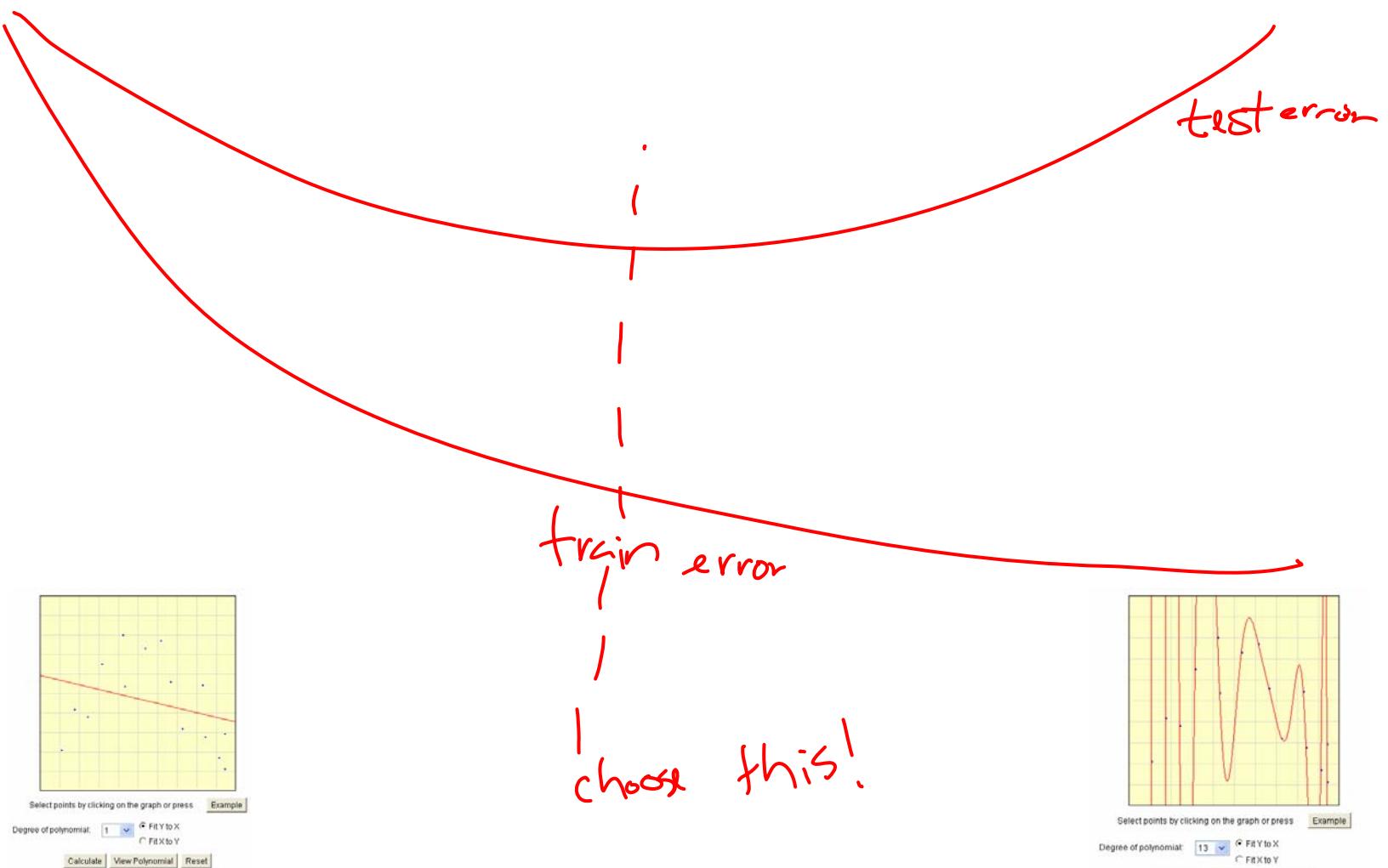
- Prior strength
 - Naïve Bayes, linear and logistic regression
- Regularization strength
 - Naïve Bayes, linear and logistic regression
- Decision trees
 - MaxpChance, depth, number of leaves
- Boosting
 - Number of rounds

■ More generally, these are called **Model Selection Problems**

■ Today:

- Describe basic idea
- Introduce very important concept for tuning learning approaches: **Cross-Validation**

Test set error as a function of model complexity



Simple greedy model selection algorithm

- Pick a dictionary of features *(A hard part)*
 - e.g., polynomials for linear regression $1, x, x^2, x^3, x^4, \dots$
- Greedy heuristic: *e.g., 1, x*
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select **next best feature X_i**
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

Greedy model selection

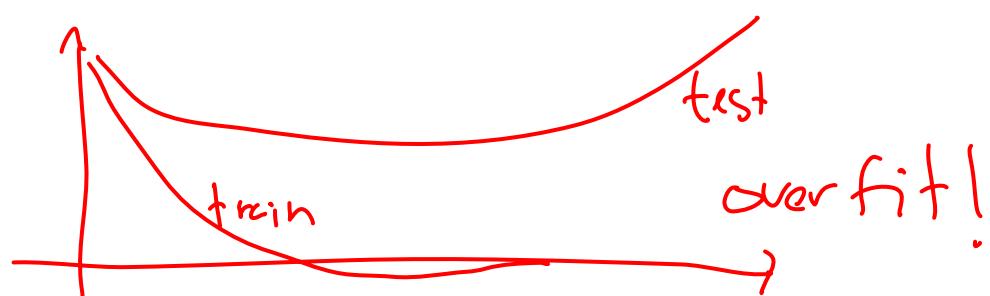
- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin '05]: Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature X_i**
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - **Recurse**

When do you stop???

- When training error is low enough?



Simple greedy model selection algorithm

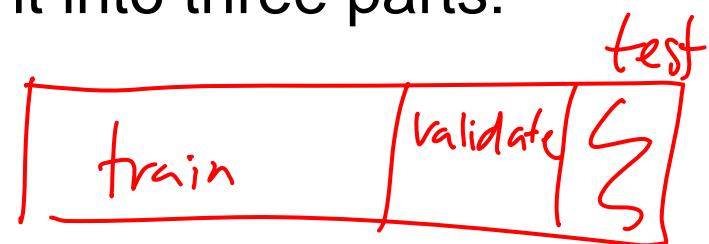
- Greedy heuristic:
 - ...
 - Select **next best feature X_i**
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - **Recurse**

When do you stop???

- ~~When training error is low enough?~~
- When test set error is low enough?

Never ever ever learn on test data!!!

Validation set

- Thus far: Given a dataset, **randomly** split it into two parts:
 - Training data – $\{x_1, \dots, x_{N_{\text{train}}}\}$
 - Test data – $\{x_1, \dots, x_{N_{\text{test}}}\}$
- But **Test data must always remain independent!**
 - Never ever ever learn on test data, including for model selection
- Given a dataset, **randomly** split it into three parts:
 - Training data – $\{x_1, \dots, x_{N_{\text{train}}}\}$
 - Validation data – $\{x_1, \dots, x_{N_{\text{valid}}}\}$
 - Test data – $\{x_1, \dots, x_{N_{\text{test}}}\}$
- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation

Simple greedy model selection algorithm

- Greedy heuristic:

- ...
 - Select **next best feature X_i**
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$

- $F_{t+1} \leftarrow F_t \cup \{X_i\}$

- Recurse

When do you stop???

- ~~When training error is low enough?~~
 - ~~When test set error is low enough?~~
 - When validation set error is low enough?

overfit to validation set.

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature X_i**
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

When do you stop???

- ~~When training error is low enough?~~
- ~~When test set error is low enough?~~
- ~~When validation set error is low enough?~~
- **Man!!! OK, should I just repeat until I get tired???**
 - I am tired now...
 - **No, “There is a better way!”**

(LOO) Leave-one-out cross validation

- Consider a **validation set with 1 example**:
 - D – training data
 - $D \setminus i$ – training data with i th data point moved to validation set
- **Learn classifier $h_{D \setminus i}$ with $D \setminus i$ dataset**
- **Estimate true error** as:
 - 0 if $h_{D \setminus i}$ classifies i th data point correctly
 - 1 if $h_{D \setminus i}$ is wrong about i th data point
 - Seems really bad estimator, but wait!
- **LOO cross validation**: Average over all data points i :
 - **For each data point you leave out, learn a new classifier $h_{D \setminus i}$**
 - **Estimate error** as:

$$error_{LOO} = \frac{1}{m} \sum_{i=1}^m \mathbb{1} (h_{D \setminus i}(\mathbf{x}^i) \neq y^i)$$

LOO cross validation is (almost) unbiased estimate of true error!

- When computing **LOOCV error**, we only use $m-1$ data points
 - So it's not estimate of true error of learning with m data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer
- **LOO is almost unbiased!**
 - Let $\text{error}_{\text{true},m-1}$ be true error of learner when you only get $m-1$ data points
 - In homework, you'll prove that LOO is unbiased estimate of $\text{error}_{\text{true},m-1}$:
$$E_{\mathcal{D}}[\text{error}_{\text{LOO}}] = \text{error}_{\text{true},m-1}$$
- **Great news!**
 - Use LOO error for model selection!!!

Simple greedy model selection algorithm

- Greedy heuristic:

- ...
 - Select **next best feature X_i**
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$

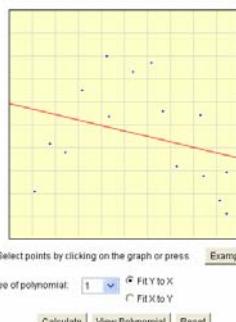
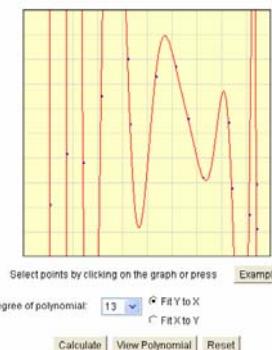
- $F_{t+1} \leftarrow F_t \cup \{X_i\}$

- Recurse

When do you stop???

- ~~When training error is low enough?~~
 - ~~When test set error is low enough?~~
 - ~~When validation set error is low enough?~~
 - **STOP WHEN $\text{error}_{\text{LOO}}$ IS LOW!!!**

Using LOO error for model selection



Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take fooooooreeee'!!!
- Solution 1: Preferred, but not usually possible
 - Find a cool trick to compute LOO (e.g., see homework)

Solution 2 to complexity of computing LOO: (More typical) Use ***k*-fold cross validation**

- Randomly divide training data into k equal parts
 - D_1, \dots, D_k

- For each i

- Learn classifier $h_{D \setminus D_i}$ using data point not in D_i
 - Estimate error of $h_{D \setminus D_i}$ on validation set D_i :

$$\text{error}_{D_i} = \frac{1}{m} \sum_{(\mathbf{x}^j, y^j) \in D_i} \mathbb{1} (h_{D \setminus D_i}(\mathbf{x}^j) \neq y^j)$$

- ***k*-fold cross validation error is average** over data splits:

$$\text{error}_{k\text{-}fold} = \frac{1}{k} \sum_{i=1}^k \text{error}_{D_i}$$

- k -fold cross validation properties:

- Much faster to compute than LOO
 - More (pessimistically) biased – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$ ☺

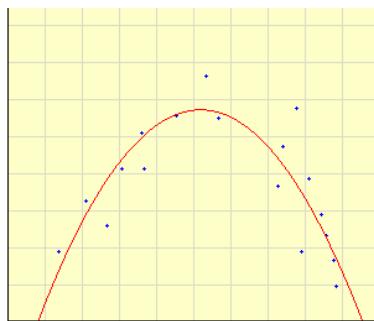
Regularization – Revisited

- Model selection 1: **Greedy**
 - Pick subset of features that have yield low LOO error
- Model selection 2: **Regularization**
 - Include **all possible features!**
 - **Penalize “complicated” hypothesis**

Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:

$$-2.2 + 3.1 X - 0.30 X^2$$



$$-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \dots$$

- Regularized least-squares (a.k.a. ridge regression), for $\lambda \geq 0$:

$$\mathbf{w}^* = \arg \min_{\mathbf{w}} \sum_j \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$

Other regularization examples

■ Logistic regression regularization

- Maximize data likelihood minus **penalty for large parameters**

$$\arg \max_{\mathbf{w}} \sum_j \ln P(y^j | \mathbf{x}^j, \mathbf{w}) - \lambda \sum_i w_i^2$$

- **Biases towards small parameter values**

■ Naïve Bayes regularization

- **Prior** over likelihood of features
- **Biases away from zero probability** outcomes

■ Decision tree regularization

- Many possibilities, e.g., **Chi-Square test** and **MaxPvalue** parameter
- **Biases towards smaller trees**

How do we pick magic parameter?

Cross Validation!!!!

λ in Linear/Logistic Regression

(analogously for # virtual examples in Naïve Bayes,
MaxPvalue in Decision Trees)

Regularization and Bayesian learning

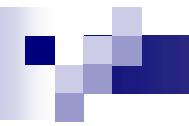
$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})$$

- We already saw that **regularization for logistic regression** corresponds to **MAP for zero mean, Gaussian prior for \mathbf{w}**
- Similar interpretation for other learning approaches:
 - **Linear regression**: Also zero mean, Gaussian prior for \mathbf{w}
 - **Naïve Bayes**: Directly defined as prior over parameters
 - **Decision trees**: Trickier to define... but we'll get back to this

Occam's Razor

- William of Ockham (1285-1349) *Principle of Parsimony*:
 - “One should not increase, beyond what is necessary, the number of entities required to explain anything.”
- Regularization penalizes for “*complex explanations*”
- Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*:
 - minimize $length(\text{misclassifications}) + length(\text{hypothesis})$
- $length(\text{misclassifications})$ – e.g., #wrong training examples
- $length(\text{hypothesis})$ – e.g., size of decision tree

Minimum Description Length Principle



- MDL prefers small hypothesis that fit data well:

$$h_{MDL} = \arg \min_h L_{C_1}(\mathcal{D} \mid h) + L_{C_2}(h)$$

- $L_{C_1}(D|h)$ – description length of data under code C_1 given h
 - Only need to describe points that h doesn't explain (classify correctly)
- $L_{C_2}(h)$ – description length of hypothesis h

- Decision tree example
 - $L_{C_1}(D|h)$ – #bits required to describe data given h
 - If all points correctly classified, $L_{C_1}(D|h) = 0$
 - $L_{C_2}(h)$ – #bits necessary to encode tree
 - Trade off quality of classification with tree size

Bayesian interpretation of MDL Principle

- MAP estimate
$$\begin{aligned} h_{MAP} &= \operatorname{argmax}_h [P(\mathcal{D} | h)P(h)] \\ &= \operatorname{argmax}_h [\log_2 P(\mathcal{D} | h) + \log_2 P(h)] \\ &= \operatorname{argmin}_h [-\log_2 P(\mathcal{D} | h) - \log_2 P(h)] \end{aligned}$$
- **Information theory fact:**
 - Smallest code for event of probability p requires $-\log_2 p$ bits
- **MDL interpretation of MAP:**
 - $-\log_2 P(\mathcal{D}|h)$ – length of \mathcal{D} under hypothesis h
 - $-\log_2 P(h)$ – length of hypothesis h (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize $length(\text{misclassifications}) + length(\text{hypothesis})$
- **In general, Bayesian approach usually looks for simpler hypothesis** – Acts as a regularizer

What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - k -fold much more practical
 - Use for selecting parameter values!
- Model selection
 - Search for a model with low cross validation error
- Regularization
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach
- Minimum description length
 - Information theoretic interpretation of regularization
 - Relationship to MAP

Acknowledgements

- Part of the boosting material in the presentation is courtesy of Tom Mitchell