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Announcements

� Recitations stay on Thursdays
� 5-6:30pm in Wean 5409
� This week: Decision Trees and Boosting

� Homework due…
� Tomorrow by 10:30am (class time) to Monica Hopes, 

Wean Hall 4616 
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Fighting the bias-variance tradeoff

� Simple (a.k.a. weak) learners are good
� e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees)
� Low variance, don’t usually overfit

� Simple (a.k.a. weak) learners are bad
� High bias, can’t solve hard learning problems

� Can we make weak learners always good???
� No!!!
� But often yes…
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Voting
� Instead of learning a single (weak) classifier, learn many weak classifiers

that are good at different parts of the input space
� Output class: (Weighted) vote of each classifier

� Classifiers that are most “sure” will vote with more conviction
� Classifiers will be most “sure” about a particular part of the space
� On average, do better than single classifier!

� But how do you ??? 
� force classifiers to learn about different parts of the input space?
� weigh the votes of different classifiers?
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Boosting [Schapire, 1989]

� Idea: given a weak learner, run it multiple times on 
(reweighted) training data, then let learned classifiers vote

� On each iteration t: 
� weight each training example by how incorrectly it was classified
� Learn a hypothesis – ht

� A strength for this hypothesis – αt

� Final classifier:

� Practically useful
� Theoretically interesting
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Learning from weighted data
� Sometimes not all data points are equal

� Some data points are more equal than others
� Consider a weighted dataset

� D(i) – weight of i th training example (xi,yi)
� Interpretations:

� i th training example counts as D(i) examples
� If I were to “resample” data, I would get more samples of “heavier” data points

� Now, in all calculations, whenever used, i th training example counts as 
D(i) “examples”
� e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count
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What αt to choose for hypothesis ht?
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[Schapire, 1989]

Training error of final classifier is bounded by:

Where 
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What αt to choose for hypothesis ht?
[Schapire, 1989]

Training error of final classifier is bounded by:

Where 
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What αt to choose for hypothesis ht?
[Schapire, 1989]

Training error of final classifier is bounded by:

Where 

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each 
iteration to minimize Zt.
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What αt to choose for hypothesis ht?
[Schapire, 1989]

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]: 

You’ll prove this in your homework! ☺
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Strong, weak classifiers

� If each classifier is (at least slightly) better than random
� εt < 0.5

� AdaBoost will achieve zero training error (exponentially fast):

� Is it hard to achieve better than random training error?
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Boosting results – Digit recognition
[Schapire, 1989]

� Boosting often
� Robust to overfitting
� Test set error decreases even after training error is zero
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Boosting generalization error bound
[Freund & Schapire, 1996]

� T – number of boosting rounds
� d – VC dimension of weak learner, measures complexity of classifier
� m – number of training examples
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Boosting generalization error bound
[Freund & Schapire, 1996]

� Contradicts: Boosting often
� Robust to overfitting
� Test set error decreases even after training error is zero

� Need better analysis tools
� we’ll come back to this later in the semester

� T – number of boosting rounds
� d – VC dimension of weak learner, measures complexity of classifier
� m – number of training examples



Boosting: Experimental Results
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[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision 
stumps (depth 1 trees), 27 benchmark datasets
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Boosting and Logistic Regression

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss
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Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

Boosting minimizes similar loss function!!

Both smooth approximations of 0/1 loss!
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Logistic regression and Boosting

Logistic regression:
� Minimize loss fn

� Define 

where xj predefined

Boosting:
� Minimize loss fn

� Define 

where h(xi) defined 
dynamically to fit data

� Weights αj learned 
incrementally
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What you need to know about Boosting

� Combine weak classifiers to obtain very strong classifier
� Weak classifier – slightly better than random on training data
� Resulting very strong classifier – can eventually provide zero training 

error

� AdaBoost algorithm
� Boosting v. Logistic Regression 

� Similar loss functions
� Single optimization (LR) v. Incrementally improving classification (B)

� Most popular application of Boosting:
� Boosted decision stumps!
� Very simple to implement, very effective classifier
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OK… now we’ll learn to pick those 
darned parameters…

� Selecting features (or basis functions)
� Linear regression
� Naïve Bayes
� Logistic regression

� Selecting parameter value
� Prior strength 

� Naïve Bayes, linear and logistic regression
� Regularization strength

� Naïve Bayes, linear and logistic regression
� Decision trees

� MaxpChance, depth, number of leaves
� Boosting

� Number of rounds
� More generally, these are called Model Selection Problems
� Today: 

� Describe basic idea
� Introduce very important concept for tuning learning approaches: Cross-Validation
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Test set error as a function of 
model complexity
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Simple greedy model selection algorithm

� Pick a dictionary of features
� e.g., polynomials for linear regression

� Greedy heuristic:
� Start from empty (or simple) set of 

features F0 = ∅
� Run learning algorithm for current set 

of features Ft
� Obtain ht

� Select next best feature Xi
� e.g., Xj that results in lowest training error 

learner when learning with Ft  ∪ {Xj}
� Ft+1 ← Ft ∪ {Xi}
� Recurse
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Greedy model selection

� Applicable in many settings:
� Linear regression: Selecting basis functions
� Naïve Bayes: Selecting (independent) features P(Xi|Y)
� Logistic regression: Selecting features (basis functions)
� Decision trees: Selecting leaves to expand

� Only a heuristic!
� But, sometimes you can prove something cool about it

� e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that 
include Naïve Bayes

� There are many more elaborate methods out there
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough? 
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough? 
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Validation set

� Thus far: Given a dataset, randomly split it into two parts: 
� Training data – {x1,…, xNtrain}
� Test data – {x1,…, xNtest}

� But Test data must always remain independent!
� Never ever ever ever learn on test data, including for model selection

� Given a dataset, randomly split it into three parts: 
� Training data – {x1,…, xNtrain}
� Validation data – {x1,…, xNvalid}
� Test data – {x1,…, xNtest}

� Use validation data for tuning learning algorithm, e.g., model 
selection
� Save test data for very final evaluation
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough?
� When validation set error is low enough? 
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough?
� When validation set error is low enough?
� Man!!! OK, should I just repeat until I get tired???

� I am tired now…
� No, “There is a better way!”
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(LOO) Leave-one-out cross validation

� Consider a validation set with 1 example:
� D – training data
� D\i – training data with i th data point moved to validation set

� Learn classifier hD\i with D\i dataset
� Estimate true error as:

� 0 if hD\i classifies i th data point correctly
� 1 if hD\i is wrong about i th data point
� Seems really bad estimator, but wait!

� LOO cross validation: Average over all data points i:
� For each data point you leave out, learn a new classifier hD\i

� Estimate error as: 
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LOO cross validation is (almost) 
unbiased estimate of true error!

� When computing LOOCV error, we only use m-1 data points
� So it’s not estimate of true error of learning with m data points!
� Usually pessimistic, though – learning with less data typically gives worse answer

� LOO is almost unbiased!
� Let errortrue,m-1 be true error of learner when you only get m-1 data points
� In homework, you’ll prove that LOO is unbiased estimate of errortrue,m-1:

� Great news!
� Use LOO error for model selection!!!
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough?
� When validation set error is low enough?
� STOP WHEN errorLOO IS LOW!!!
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Using LOO error for model selection
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Computational cost of LOO

� Suppose you have 100,000 data points
� You implemented a great version of your learning 

algorithm
� Learns in only 1 second 

� Computing LOO will take about 1 day!!!
� If you have to do for each choice of basis functions, it will 

take fooooooreeeve’!!!
� Solution 1: Preferred, but not usually possible

� Find a cool trick to compute LOO (e.g., see homework)
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Solution 2 to complexity of computing LOO:  
(More typical) Use k-fold cross validation

� Randomly divide training data into k equal parts
� D1,…,Dk

� For each i
� Learn classifier hD\Di using data point not in Di 
� Estimate error of hD\Di on validation set Di:

� k-fold cross validation error is average over data splits:

� k-fold cross validation properties:
� Much faster to compute than LOO
� More (pessimistically) biased – using much less data, only m(k-1)/k
� Usually, k = 10 ☺
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Regularization – Revisited 

� Model selection 1: Greedy
� Pick subset of features that have yield low LOO error

� Model selection 2: Regularization
� Include all possible features!
� Penalize “complicated” hypothesis
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Regularization in linear regression

� Overfitting usually leads to very large parameter choices, e.g.:

� Regularized least-squares (a.k.a. ridge regression), for λ≥0:

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …



©2006 Carlos Guestrin 40

Other regularization examples

� Logistic regression regularization
� Maximize data likelihood minus penalty for large parameters

� Biases towards small parameter values

� Naïve Bayes regularization
� Prior over likelihood of features
� Biases away from zero probability outcomes

� Decision tree regularization
� Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
� Biases towards smaller trees
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How do we pick magic parameter?

λ in Linear/Logistic Regression
(analogously for # virtual examples in Naïve Bayes, 
MaxPvalue in Decision Trees)

Cross Validation!!!!
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Regularization and Bayesian learning

� We already saw that regularization for logistic 
regression corresponds to MAP for zero mean, 
Gaussian prior for w

� Similar interpretation for other learning approaches:
� Linear regression: Also zero mean, Gaussian prior for w
� Naïve Bayes: Directly defined as prior over parameters
� Decision trees: Trickier to define… but we’ll get back to this
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Occam’s Razor

� William of Ockham (1285-1349) Principle of Parsimony:
� “One should not increase, beyond what is necessary, the number of

entities required to explain anything.”
� Regularization penalizes for “complex explanations”

� Alternatively (but pretty much the same), use Minimum 
Description Length (MDL) Principle:
� minimize length(misclassifications) + length(hypothesis)

� length(misclassifications) – e.g., #wrong training examples
� length(hypothesis) – e.g., size of decision tree
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Minimum Description Length Principle

� MDL prefers small hypothesis that fit data well:

� LC1(D|h) – description length of data under code C1 given h
� Only need to describe points that h doesn’t explain (classify correctly)

� LC2(h) – description length of hypothesis h
� Decision tree example

� LC1(D|h) – #bits required to describe data given h
� If all points correctly classified, LC1(D|h) = 0

� LC2(h) – #bits necessary to encode tree
� Trade off quality of classification with tree size
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Bayesian interpretation of MDL Principle

� MAP estimate

� Information theory fact:
� Smallest code for event of probability p requires –log2p bits

� MDL interpretation of MAP:
� -log2 P(D|h) – length of D under hypothesis h
� -log2 P(h) – length of hypothesis h (there is hidden parameter here)
� MAP prefers simpler hypothesis:

� minimize length(misclassifications) + length(hypothesis)

� In general, Bayesian approach usually looks for simpler 
hypothesis – Acts as a regularizer
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What you need to know about Model Selection, 
Regularization and Cross Validation

� Cross validation
� (Mostly) Unbiased estimate of true error
� LOOCV is great, but hard to compute
� k-fold much more practical
� Use for selecting parameter values!

� Model selection
� Search for a model with low cross validation error

� Regularization
� Penalizes for complex models
� Select parameter with cross validation
� Really a Bayesian approach

� Minimum description length
� Information theoretic interpretation of regularization
� Relationship to MAP
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