

Bayesian Networks – Representation

Machine Learning – 10701/15781

Carlos Guestrin

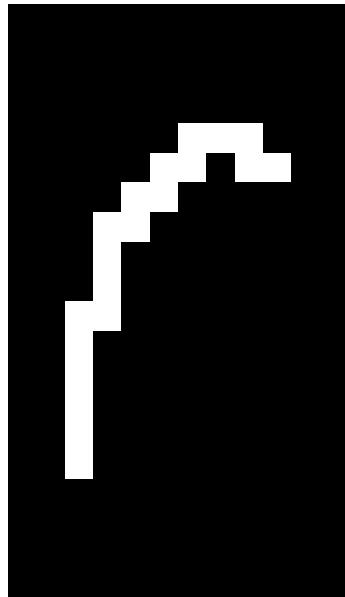
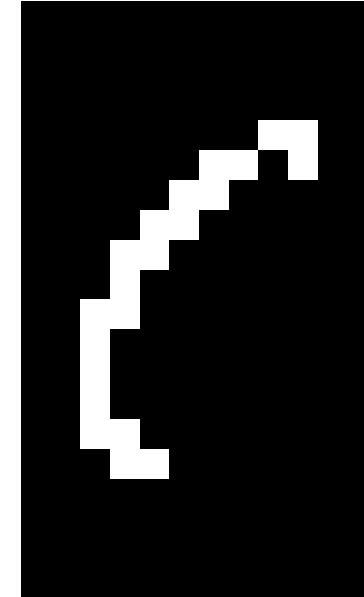
Carnegie Mellon University

March 20th, 2006

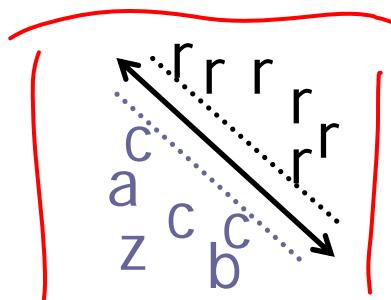
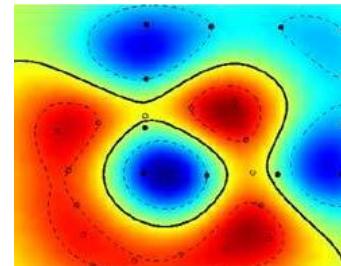
Announcements

- Welcome back!
- One page project proposal due Wednesday
- We'll go over midterm in this week's recitation

Handwriting recognition



Character recognition, e.g., kernel SVMs



Webpage classification

The screenshot shows the homepage of the TOTAL company. At the top left is the text "the world of TOTAL". On the right is a navigation menu titled "All About The Company" with links to "Global Activities", "Corporate Structure", "TOTAL's Story", "Upstream Strategy", "Downstream Strategy", "Chemicals Strategy", "TOTAL Foundation", and "Homepage". The main content area features a large image of a TOTAL building and a red fuel pump. The text "all about the company" is displayed in red. Below this, there are four paragraphs of text: "Our energy exploration, production, and distribution operations span the globe, with activities in more than 100 countries.", "At TOTAL, we draw our greatest strength from our fast-growing oil and gas reserves. Our strategic emphasis on natural gas provides a strong position in a rapidly expanding market.", "Our expanding refining and marketing operations in Asia and the Mediterranean Rim complement already solid positions in Europe, Africa, and the U.S.", and "Our growing specialty chemicals sector adds balance and profit to the core energy business."

Company home page

VS

Personal home page

VS

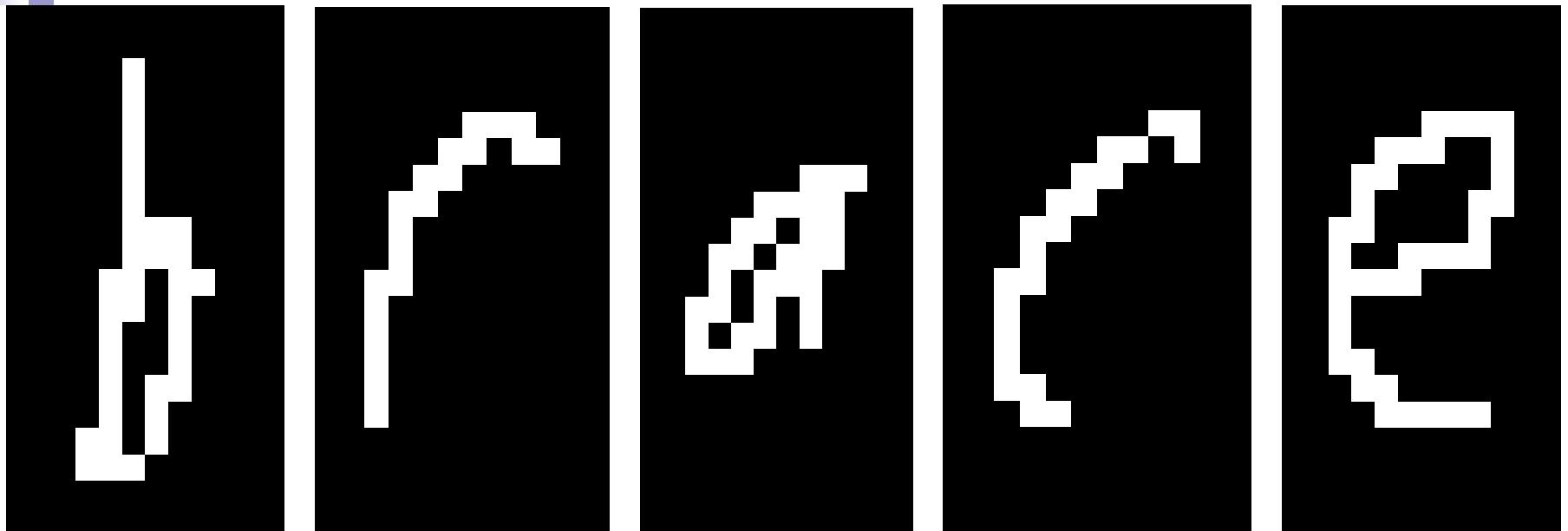
cannot spell

University home page

VS

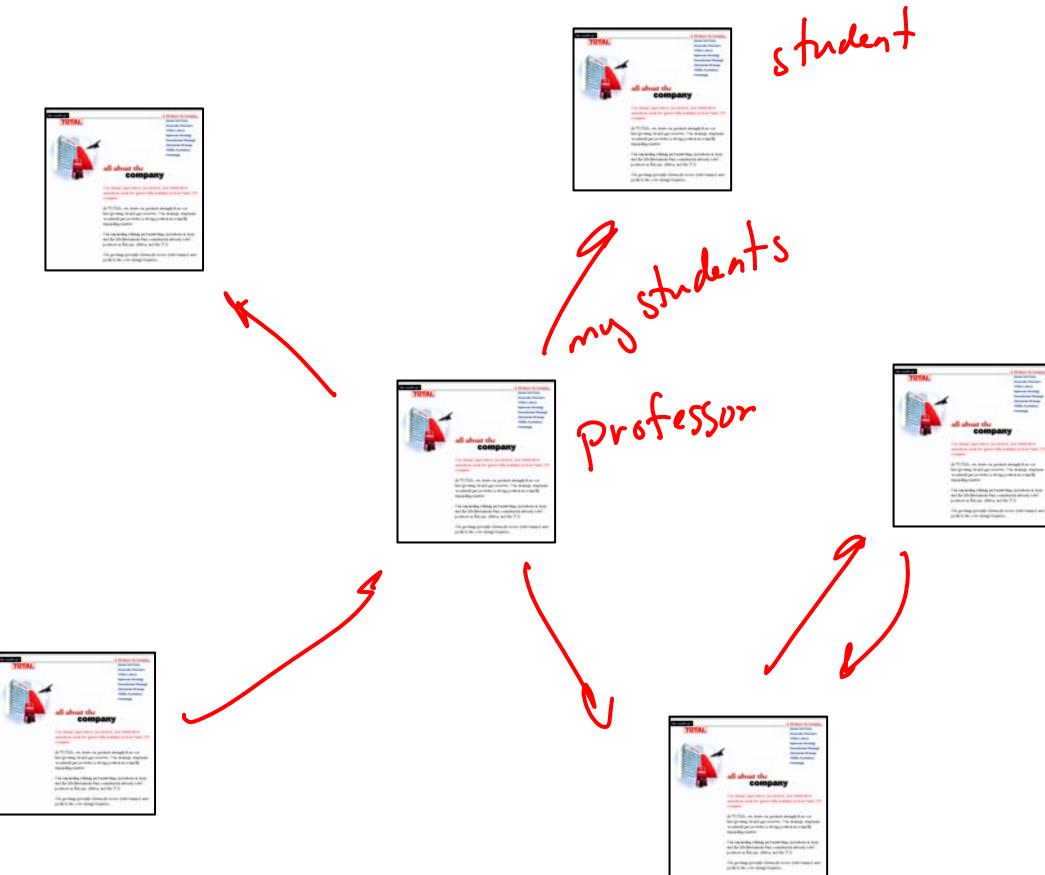
...

Handwriting recognition 2



- context
- examples not i.i.d.
- + correlations between labels !!

Webpage classification 2

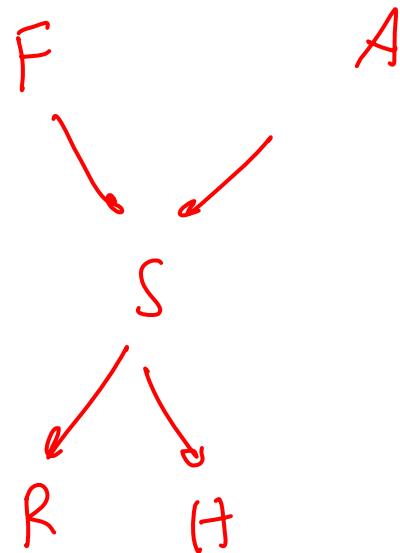


Today – Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers $p(y|x)$
 $p(y,x)$
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

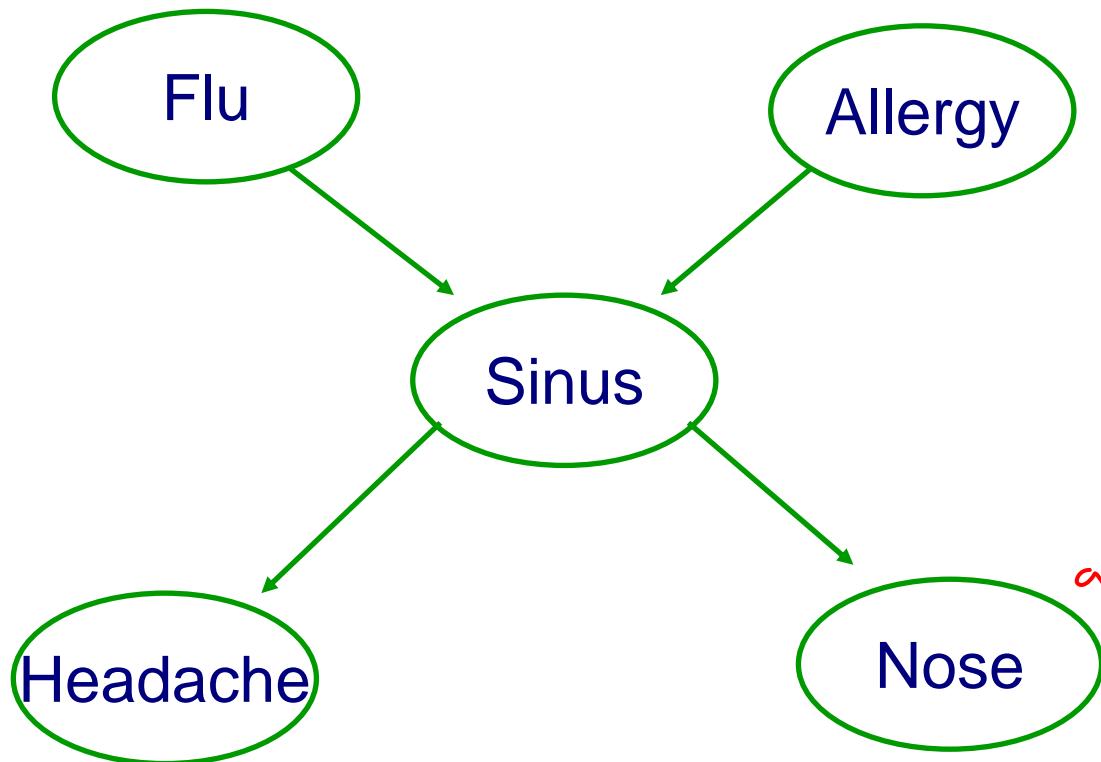
Causal structure

- Suppose we know the following:
 - The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - Sinus inflammation causes headaches
- How are these connected?



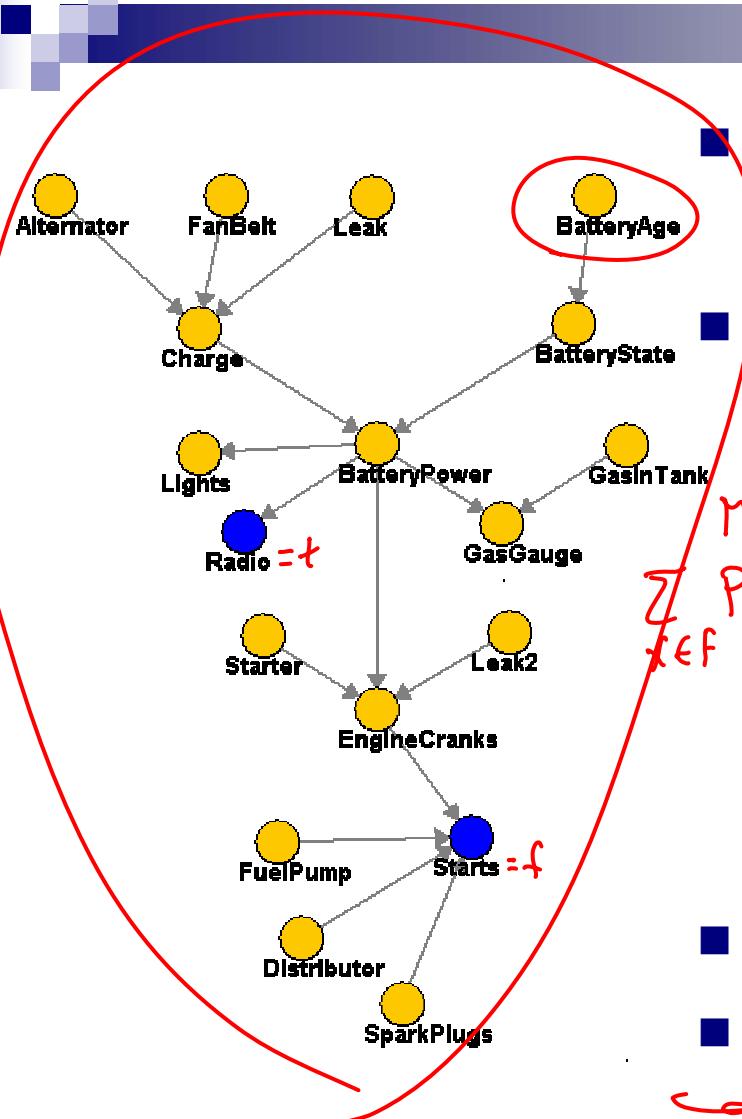
$$P(F=t \mid H=t, R=f)$$

Possible queries



- Inference
 $P(F=t | N=t)$
- Most probable explanation
 $H=t, N=t$
 $\underset{f, a, s}{\operatorname{argmax}} P(f, a, s | H=t, N=t)$
- Active data collection
 $H=t$
 \rightarrow Running Nose?

Car starts BN



- 18 binary attributes

- Inference

□ $P(\text{BatteryAge} | \text{Starts} = f) \propto P(\text{BA}, S = f)$

Marginalization

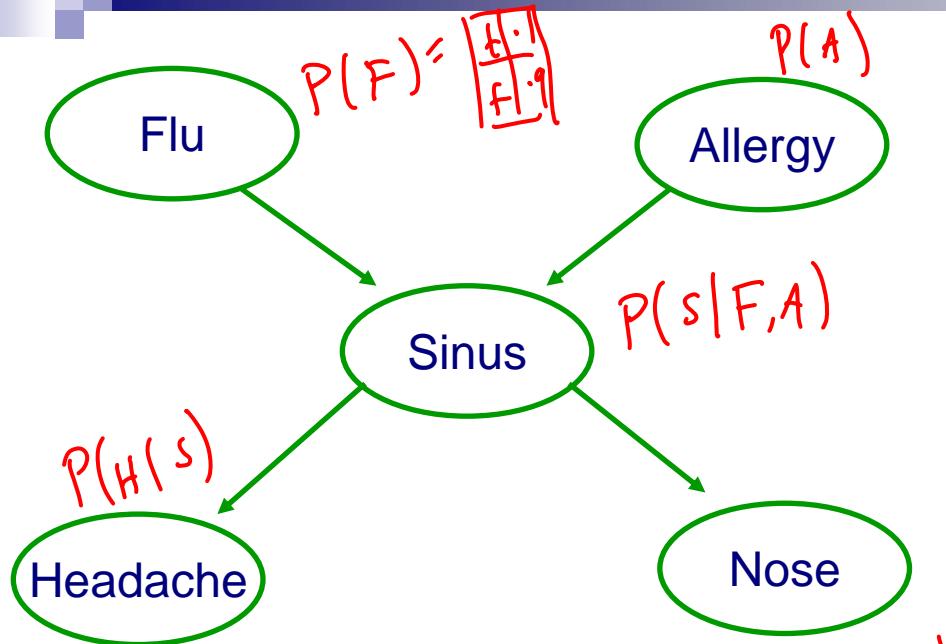
$\sum_{S \in F} P(\text{BA}, F \setminus S = f) = P(\text{BA}, S = f)$

- 2^{18} terms, why so fast?

- Not impressed?

→ □ HailFinder BN – more than $3^{54} = 58149737003040059690390169$ terms

Factored joint distribution - Preview



Indep:

$$(F \perp A)$$

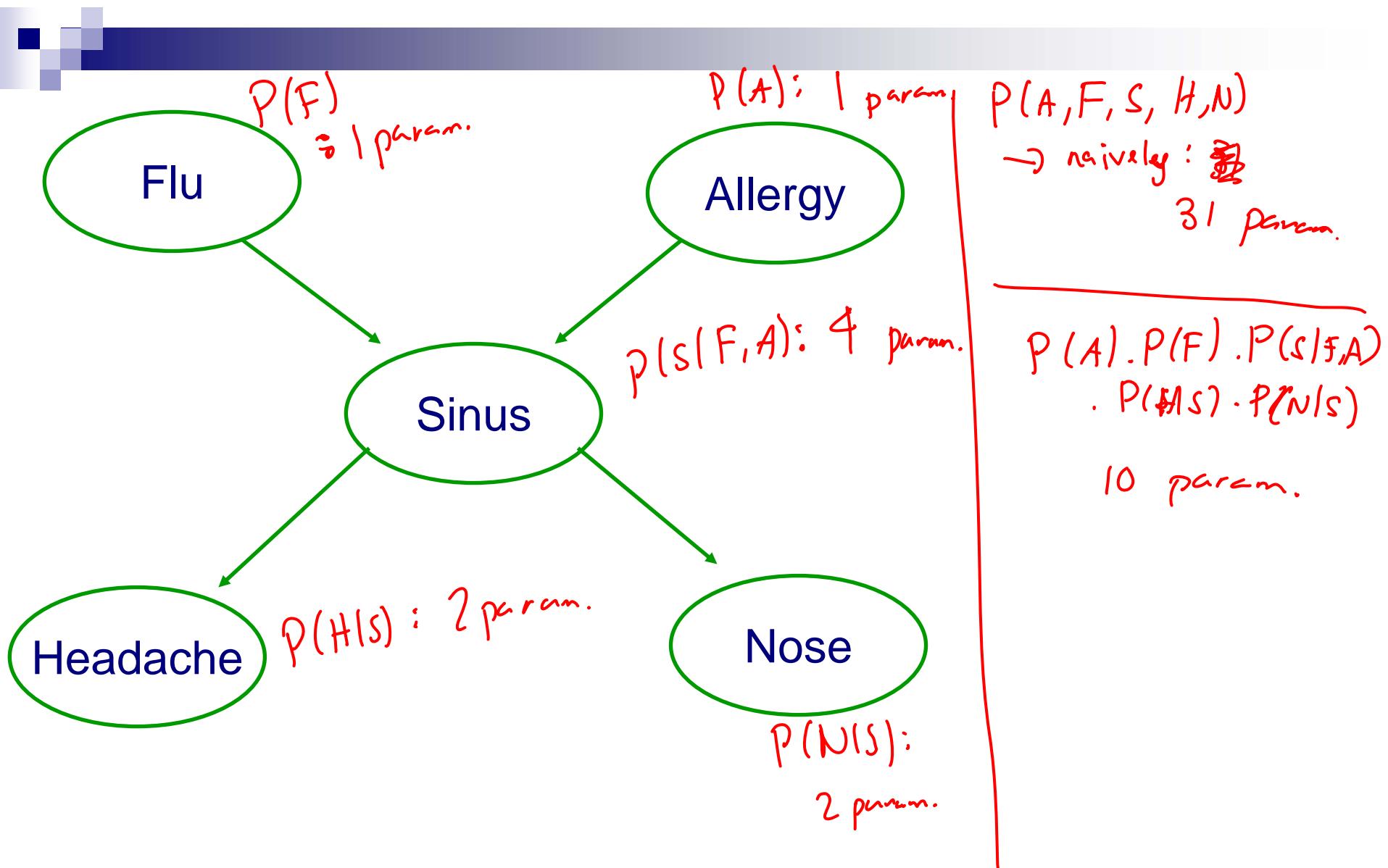
$$(F \perp N | S)$$

$$\begin{aligned} & P(F, A, S, H, N) \\ & = P(F) \cdot P(A) \cdot P(S|FA) \cdot \\ & \quad P(H|S) \cdot P(N|S) \end{aligned}$$

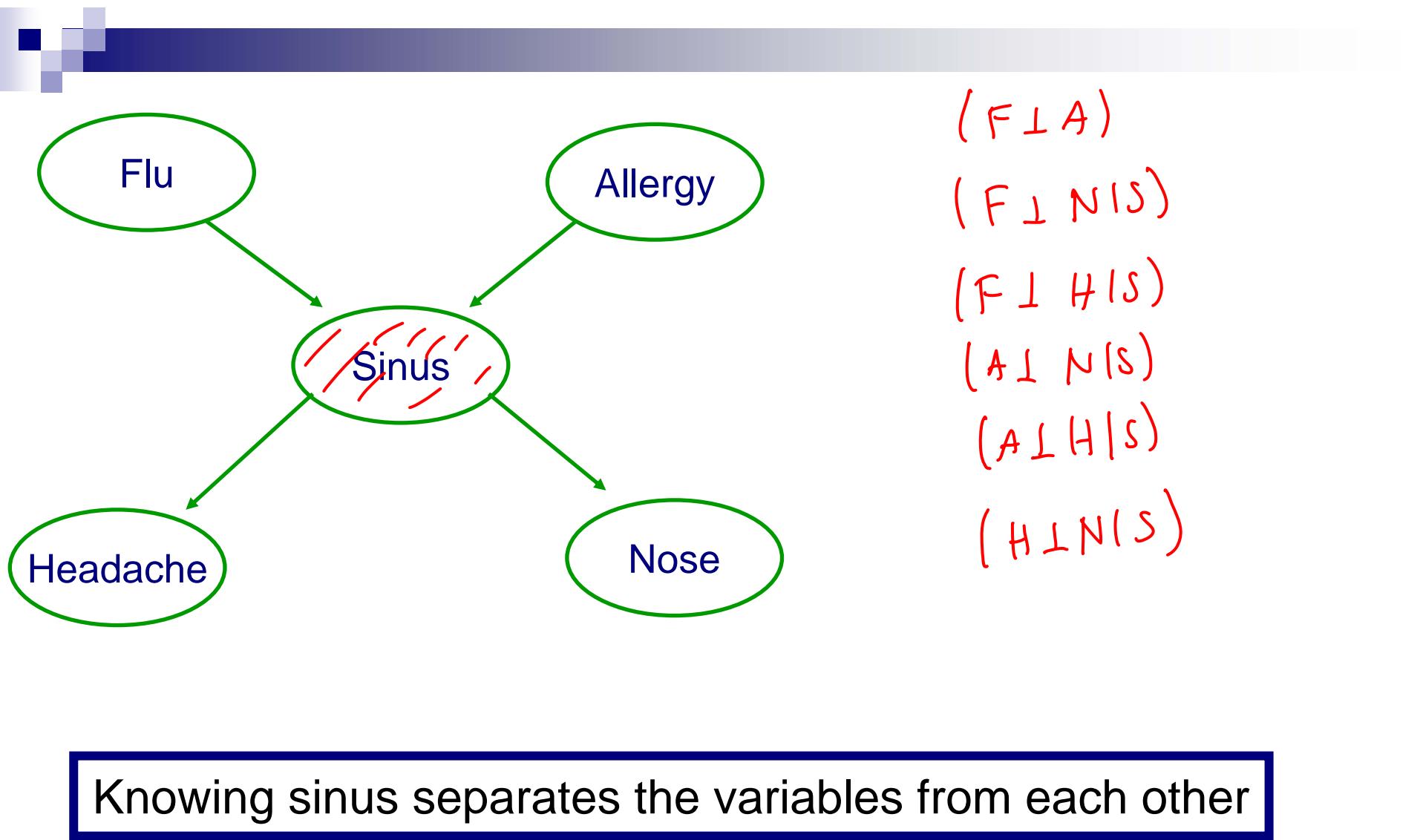
$$\begin{aligned} & P(N|S) = \\ & 2 \text{ parameters} \end{aligned}$$

$N \backslash S$	t	f
t	$.8$	$.3$
f	$1 - .8 = .2$	$1 - .3 = .7$

Number of parameters



Key: Independence assumptions



(Marginal) Independence

- Flu and Allergy are (marginally) independent

$$P(F, A) = P(F) \cdot P(A)$$

Flu = t	• 1
Flu = f	• 9

- More Generally:

$$P(A|F) = P(A)$$

$$P(F, A) =$$

Allergy = t	. 2
Allergy = f	. 8

	Flu = t	Flu = f
Allergy = t		$.2 \times .1$ $\therefore 18$
Allergy = f		

Marginally independent random variables

$\perp \leftarrow \text{indep.}$

- Sets of variables X, Y
- X is independent of Y if
 - $P \models (X=x \perp Y=y), \forall \underline{x \in \text{Val}(X)}, \underline{y \in \text{Val}(Y)}$
- Shorthand:
 - Marginal independence: $P \models (X \perp \underline{Y})$
entails
- Proposition: P satisfies $(X \perp Y)$ if and only if
 - $\underline{P(X, Y) = P(X) P(Y)}$

Conditional independence

- Flu and Headache are not (marginally) independent
 $P(F|H) \neq P(F)$, e.g., $P(F=t|H=t) \neq P(F=t)$

- Flu and Headache are independent given Sinus infection

$$P(F|S, H) = P(F|S) \text{ :e.g., } P(F=t|S=t, H=t) = P(F=t|S=t)$$

- More Generally:

$$P(F|S, H) = P(F|S)$$

. or

$$P(F, H|S) = P(F|S) \cdot P(H|S)$$

Conditionally independent random variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if
 - $P \models (X=x \wedge Y=y | Z=z), \forall x \in \text{Val}(X), y \in \text{Val}(Y), z \in \text{Val}(Z)$
- Shorthand:
 - **Conditional independence:** $P \models (X \perp Y | Z)$
 - For $P \models (X \perp Y | \emptyset)$, write $P \models (X \perp Y)$
- **Proposition:** P satisfies $(X \perp Y | Z)$ if and only if
 - $P(X, Y | Z) = P(X | Z) P(Y | Z)$

Properties of independence

■ Symmetry:

- $(X \perp Y | Z) \Rightarrow (Y \perp X | Z)$

■ Decomposition:

- $(X \perp Y, W | Z) \Rightarrow (X \perp Y | Z)$

■ Weak union:

- $(X \perp Y, W | Z) \Rightarrow (X \perp Y | Z, W)$

■ Contraction:

- $(X \perp W | Y, Z) \& (X \perp Y | Z) \Rightarrow (X \perp Y, W | Z)$

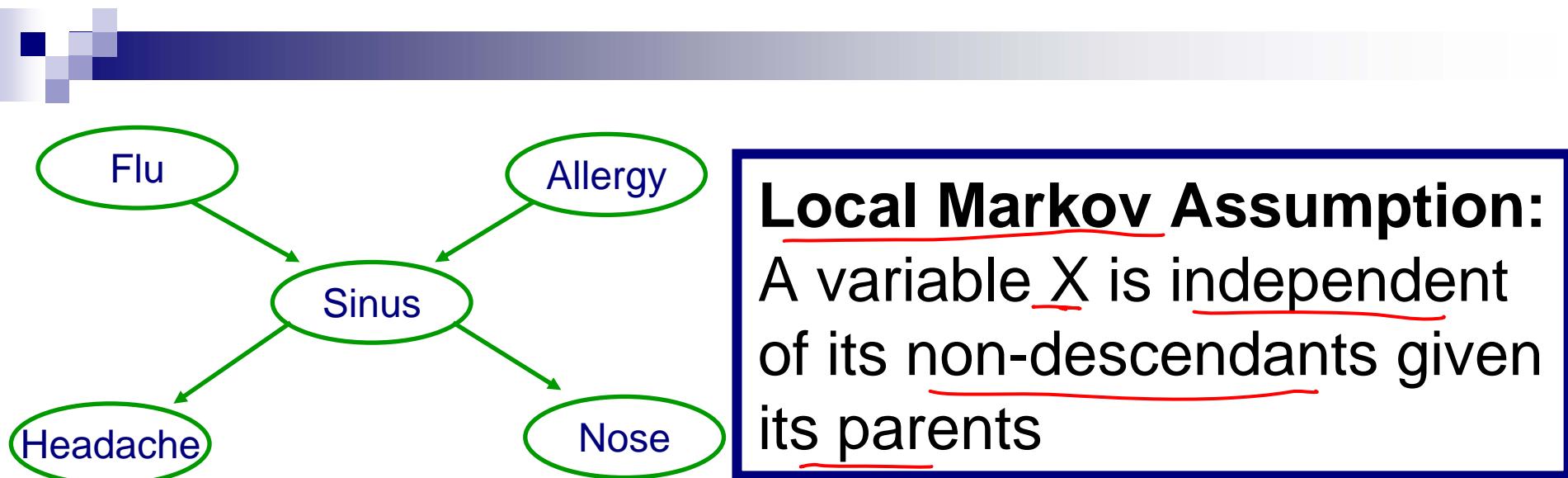
■ Intersection:

- $(X \perp Y | W, Z) \& (X \perp W | Y, Z) \Rightarrow (X \perp Y, W | Z)$

- Only for positive distributions!

- $P(\alpha) > 0, \forall \alpha, \alpha \neq \emptyset$

The independence assumption

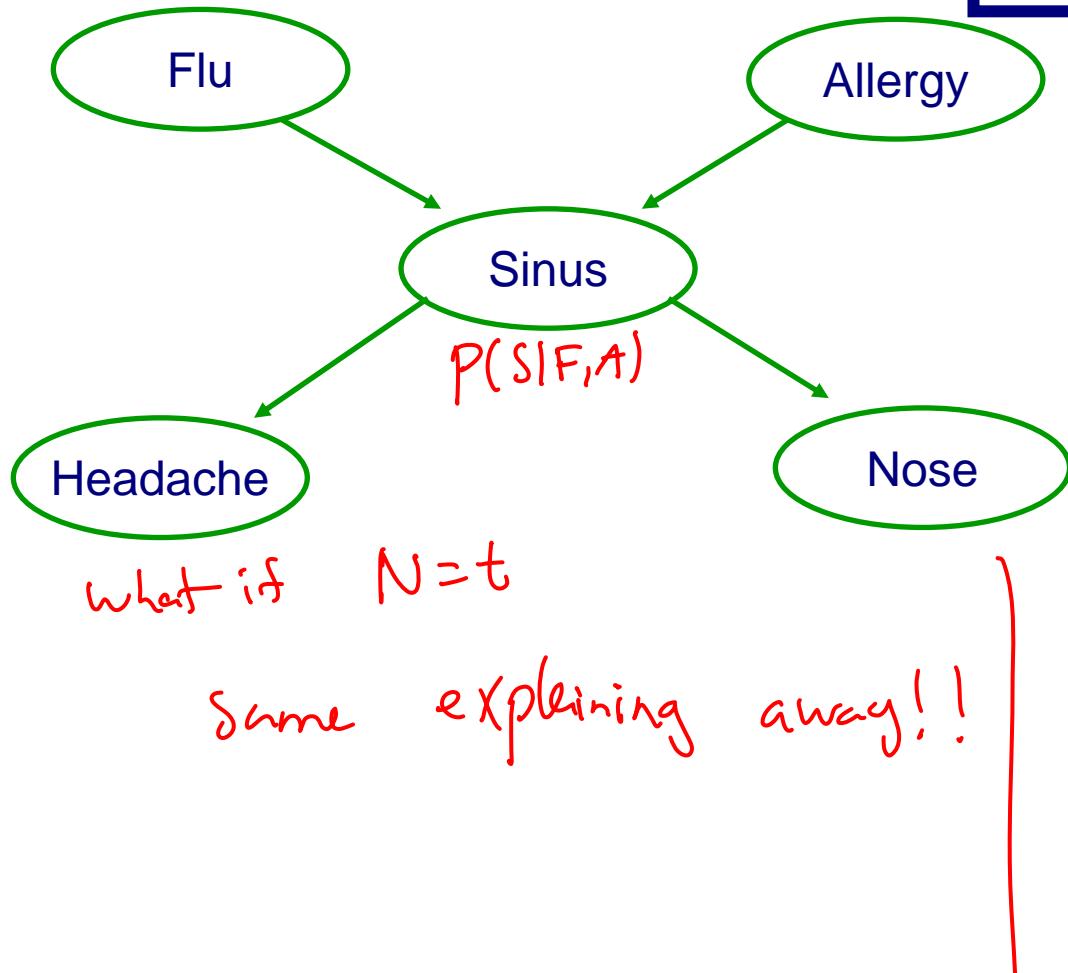


$$(F \perp A)$$

$$(N \perp \{F, A, H\} \mid S)$$

Explaining away

Local Markov Assumption:
A variable X is independent of its non-descendants given its parents



$(F \perp A)$ marginally

what if $S=t$

$S=t \quad P(F=t|S=t) > P(F=t)$

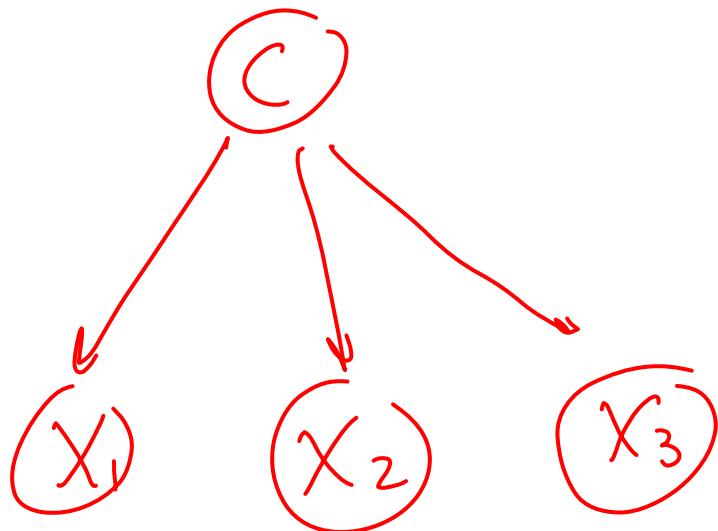
but

$S=t \wedge A=t :$

$$P(F=t|S=t) > P(F=t|S=t, A=t) > P(F=t)$$

$F \not\perp A \text{ given } S$

Naïve Bayes revisited

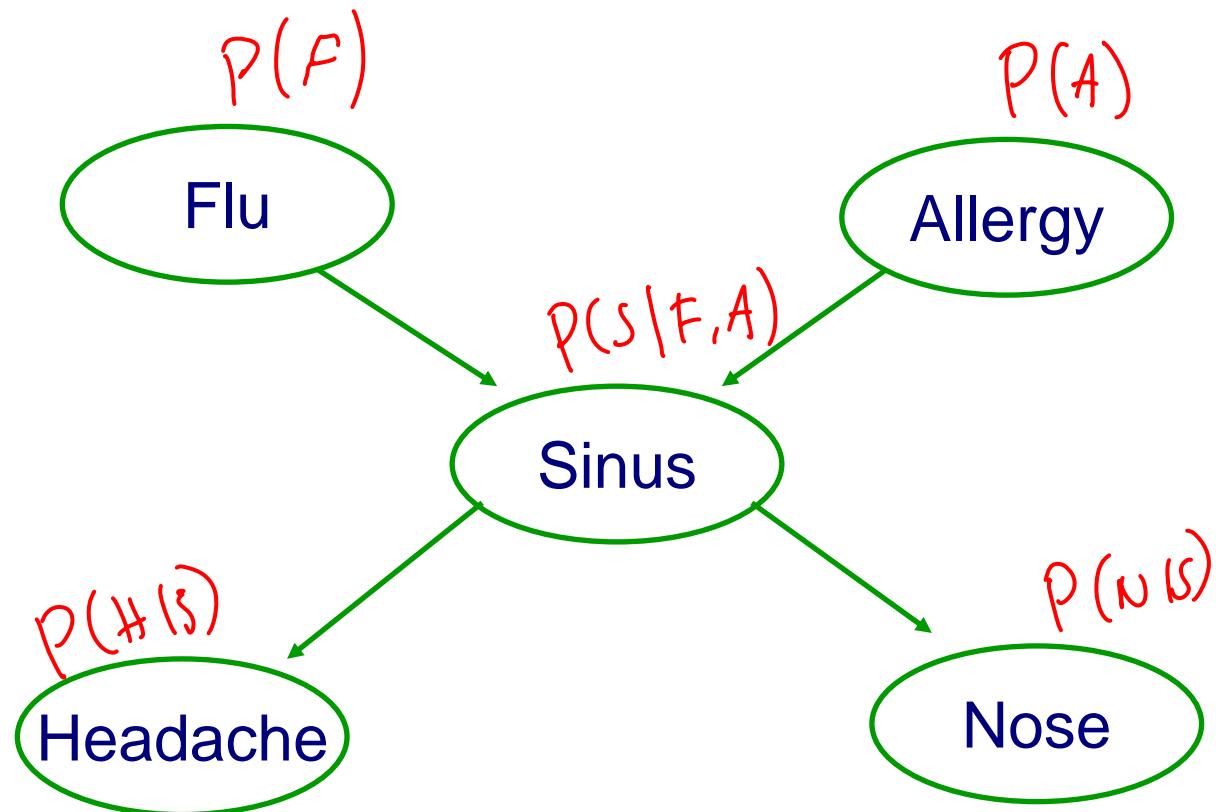


$$(X_i \perp X_j | C)$$

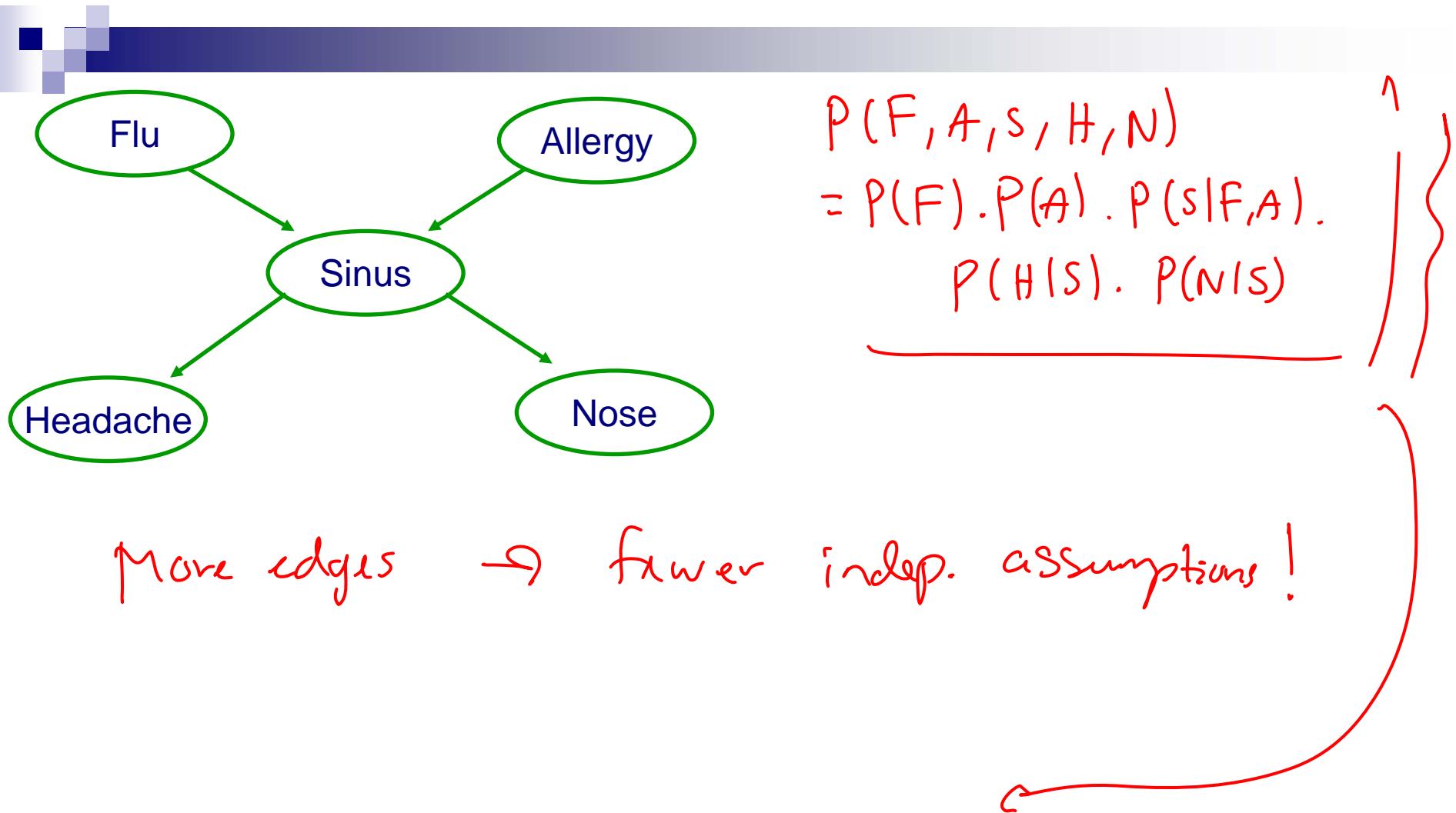
Local Markov Assumption:
A variable X is independent of its non-descendants given its parents

What about probabilities?

Conditional probability tables (CPTs)



Joint distribution

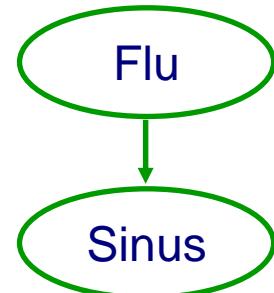


Why can we decompose? ^{local} Markov Assumption!

The chain rule of probabilities

- $\underline{P(A,B)} = \underline{P(A)} \underline{P(B|A)}$

$$P(F,S) = P(F) \cdot P(S|F)$$

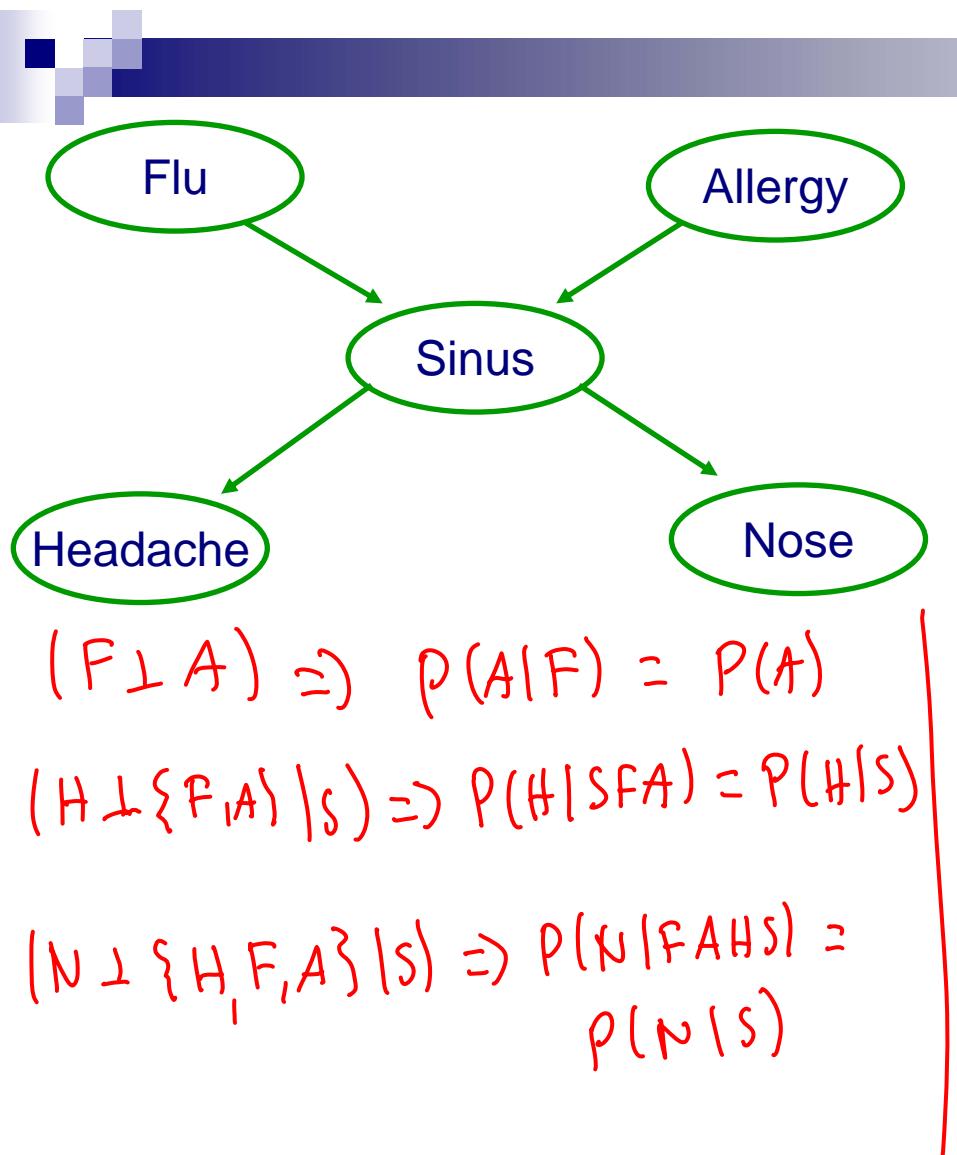


- More generally:

- $\underline{P(X_1, \dots, X_n)} = \underline{P(X_1)} \cdot \underline{P(X_2|X_1)} \cdot \dots \cdot \underline{P(X_n|X_1, \dots, X_{n-1})}$

$$P(x_3|x_2, x_1).$$

Chain rule & Joint distribution



Local Markov Assumption:
A variable X is independent of its non-descendants given its parents

$$P(F, A, S, H, N) = \text{chain rule no assumptions}$$

$$P(F) \cdot P(A|F) \cdot P(S|FA) \cdot P(H|SFA) \cdot P(N|FAHS)$$

$\overset{\text{"P(A)}}$ $\overset{\text{"P(H|S)}}$ $\overset{\text{"P(N|S)}}$

with local Markov Assumption:

$$\Rightarrow P(F) P(A) P(S|FA) P(H|S) P(N|S)$$

Two (trivial) special cases

Edgeless graph



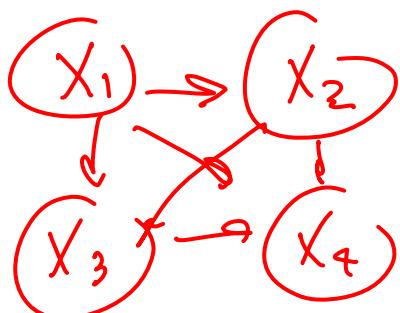
$$(x_1 \perp x_4)$$

$$(x_2 \perp x_3 \mid x_5)$$

⋮

give you some P
only if all vars indep.

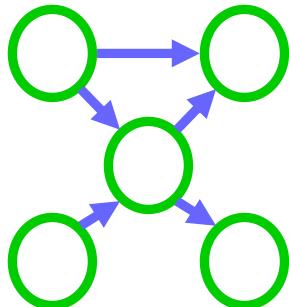
Fully-connected graph



no indep.
in graph

The Representation Theorem – Joint Distribution to BN

BN:



Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \text{Pa}_{X_i})$$

P can be represented with BN

If P exists at least one BN

Real Bayesian networks applications

it's all
about exploiting
indep.
(problem structure)

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - <http://www.research.microsoft.com/research/dtg/>
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault diagnosis
- Modeling sensor network data

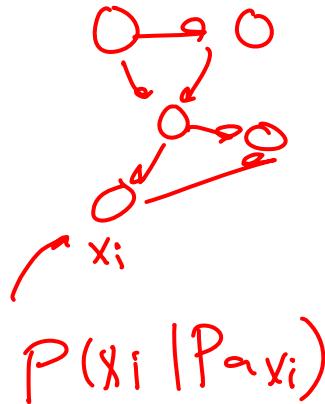
A general Bayes net

- Set of random variables

$x_1, x_2, x_3 \dots, x_n$

- Directed acyclic graph

- Encodes independence assumptions



- CPTs

- Joint distribution:

$$\underbrace{P(X_1, \dots, X_n)}_{\text{Joint distribution}} = \prod_{i=1}^n P(X_i | \text{Pa}_{X_i})$$

How many parameters in a BN?

- Discrete variables X_1, \dots, X_n
- Graph
 - Defines parents of X_i , Pa_{X_i}
- CPTs – $P(X_i | \text{Pa}_{X_i})$

one CPT $P(X_i | \text{Pa}_{X_i})$

param:

$$|\text{Pa}_{X_i}| \cdot (|X_i| - 1)$$

$$|\text{Pa}_{X_i}| = \prod_{X_j \in \text{Pa}_{X_i}} |X_j|$$

X_i takes
on $|X_i|$
possible
values

e.g. X_i : $|X_i| = K$
no var has more than
 d parents.
parameters $< K^d (K-1) \cdot n$

~~size~~ fully connected:

$$K^n - 1$$

Another example

- Variables:
 - B – Burglar
 - E – Earthquake
 - A – Burglar alarm
 - N – Neighbor calls
 - R – Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Another example – Building the BN

- B – Burglar
- E – Earthquake
- A – Burglar alarm
- N – Neighbor calls
- R – Radio report

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - $(X_i \perp \text{NonDescendants}_{X_i} \mid \text{Pa}_{X_i})$
- But then we talked about other (in)dependencies
 - e.g., explaining away
- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs

– BNs with 3 nodes

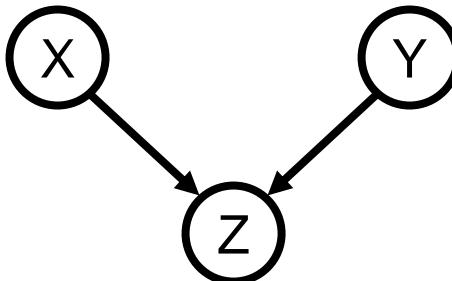
Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

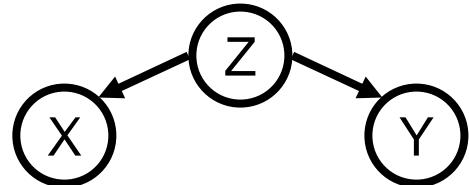
Indirect causal effect:

Indirect evidential effect:

Common effect:

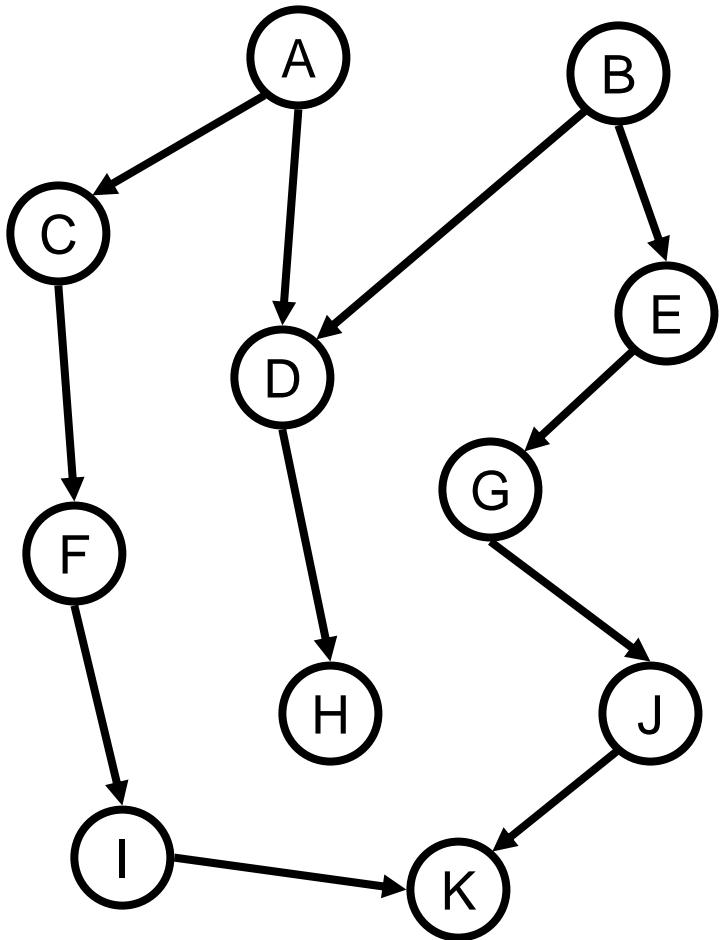


Common cause:

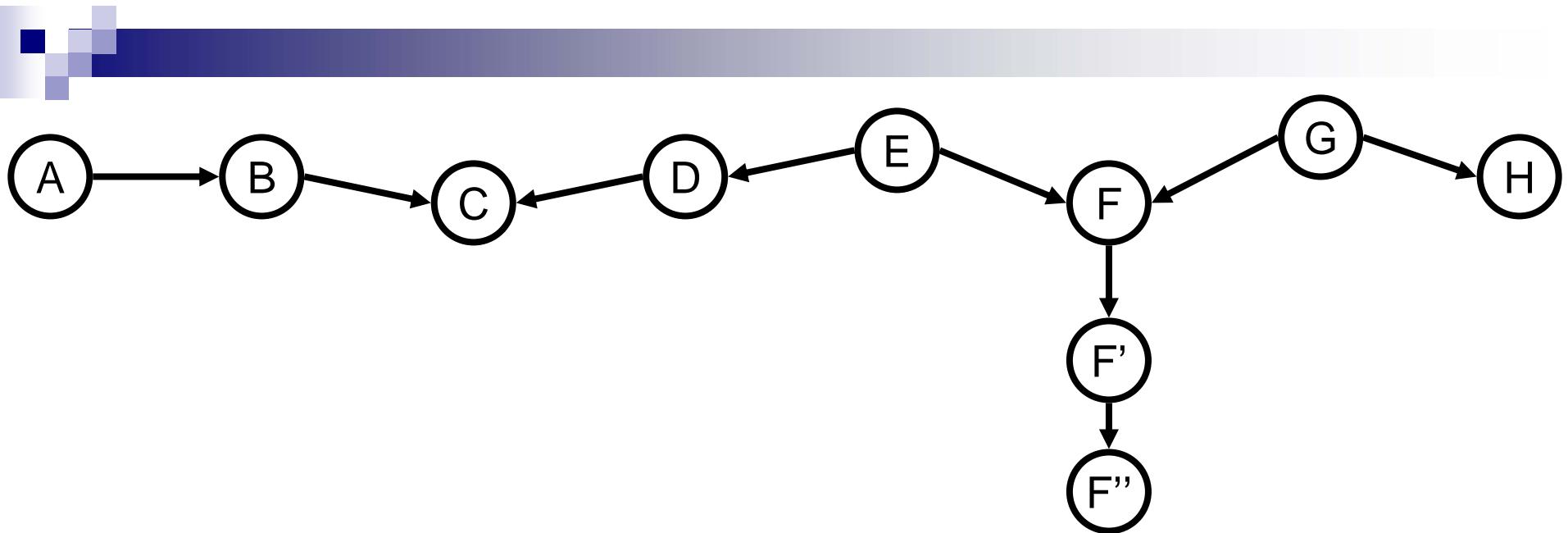


Understanding independencies in BNs

– Some examples



An active trail – Example



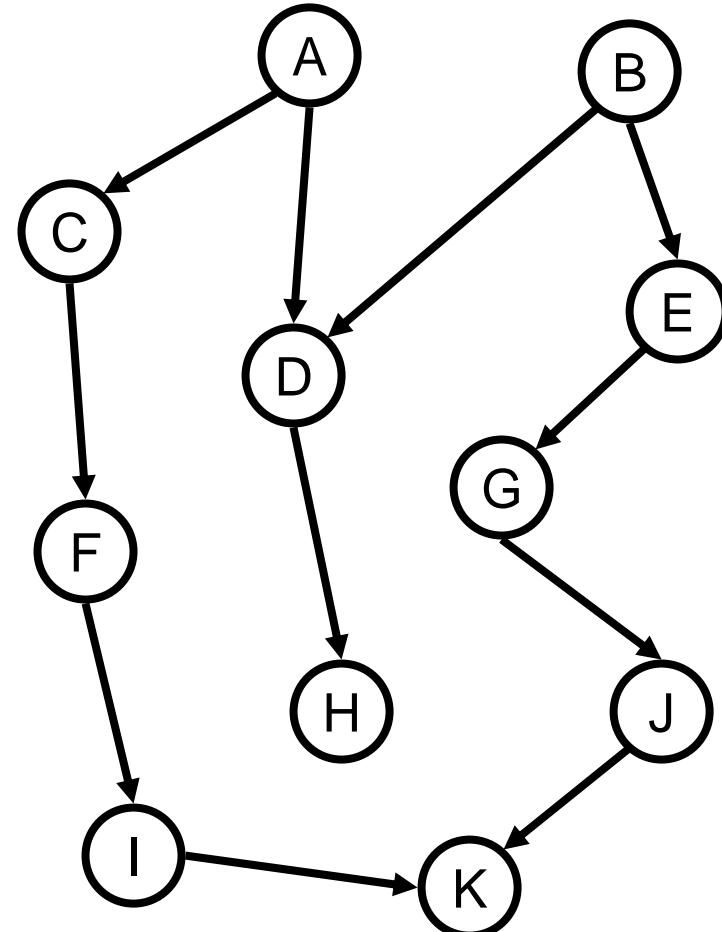
When are A and H independent?

Active trails formalized

- A path $X_1 - X_2 - \dots - X_k$ is an **active trail** when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** ($X_i \notin O$)
 - $X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** ($X_i \notin O$)
 - $X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** ($X_i \notin O$)
 - $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is **observed** ($X_i \in O$), or **one of its descendants**

Active trails and independence?

- **Theorem:** Variables X_i and X_j are independent given $Z \subseteq \{X_1, \dots, X_n\}$ if there is no active trail between X_i and X_j when variables $Z \subseteq \{X_1, \dots, X_n\}$ are observed



The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Joint probability distribution:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \text{Pa}_{X_i})$$

Important because:
Every P has at least one BN structure G

If joint probability distribution:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \text{Pa}_{X_i})$$

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

Important because:

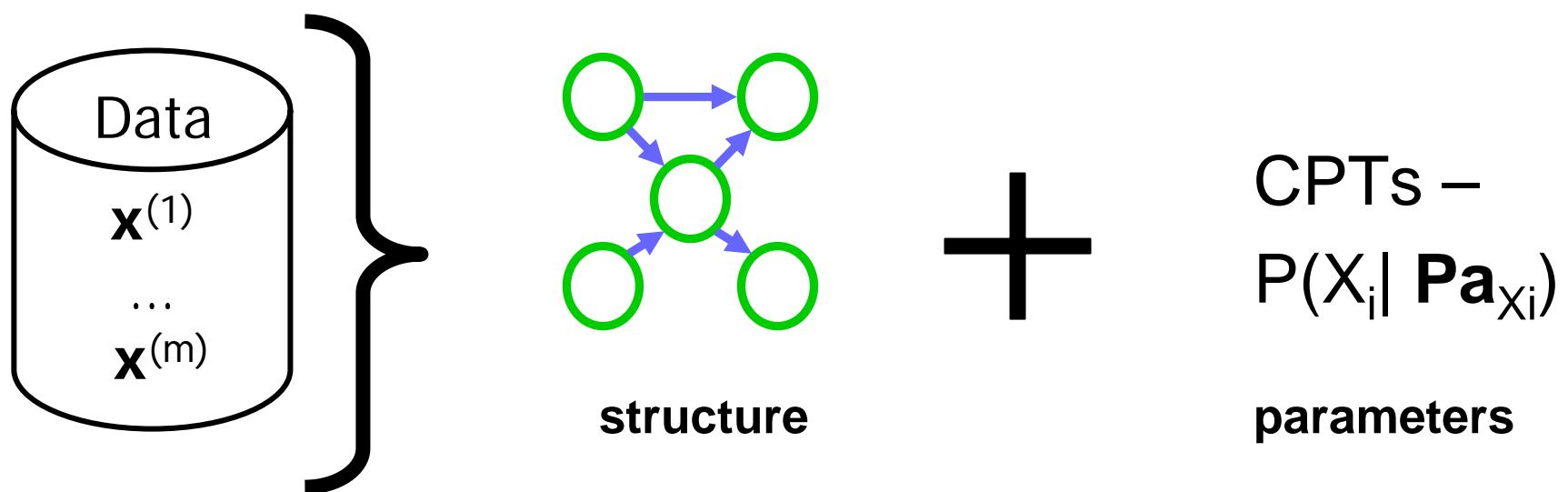
Read independencies of P from BN structure G

“Simpler” BNs

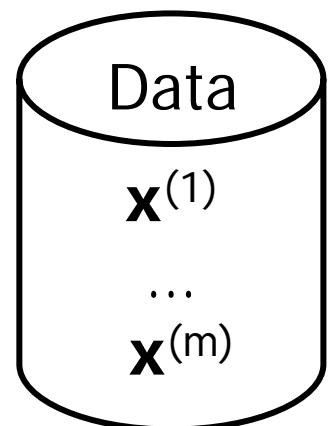
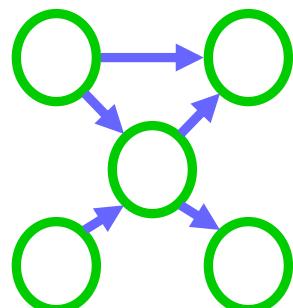
- A distribution can be represented by many BNs:
- Simpler BN, requires fewer parameters

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data		
Missing data		



Learning the CPTs



For each discrete variable X_i

MLE:
$$P(X_i = x_i | X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

Queries in Bayes nets

- Given BN, find:
 - Probability of X given some evidence, $P(X|e)$
 - Most probable explanation, $\max_{x_1, \dots, x_n} P(x_1, \dots, x_n | e)$
 - Most informative query
- Learn more about these next class

What you need to know

- Bayesian networks
 - A compact **representation** for large probability distributions
 - Not an algorithm
- Semantics of a BN
 - Conditional independence assumptions
- Representation
 - Variables
 - Graph
 - CPTs
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! ☺

Acknowledgements

- JavaBayes applet

- <http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html>