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Announcements
" A
0 Vlelcome back!

m One page project proposal due Wednesday

m \We’'ll go over midterm in this week’s recitation



Handwriting recognition
"

Character recognition, e.g., kernel SVMs




Webpage classification
" J

» All About The Company

Global Activities
Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy

Chemicals & By
TOTAL Foundation
Homepage

all about the
company

Cur energy exploration, production, and distribution
operations span the globe, with actwities in more than 100
countries.

At TOTAT, we draw our greatest strength from our
fast-growing oil and gas reserves. Our strategic emphasis
on natural gas provides a strong posiion in a rapidly
expanding marlket.

Our expanding refining and marketing operations in Asia
and the Mediterranean Fim complement already solid
posttions in Europe, Affica, and the TU.5.

Cur growing specialty chemicals sector adds balance and
profit to the core energy business.

» Company home page

VS

Personal home page

VS
C»émnfr SPll,

Univeristy home page

VS



Handwriting recognition 2
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Webpage classification 2




Today — Bayesian networks
" J
m One of the most exciting advancements in
statistical Al in the last 10-15 years

m Generalizes naive Bayes and logistic regression

classifiers PLyIv)
PLY,X)

m Compact representation for exponentially-large
probabillity distributions

m Exploit conditional independencies




Causal structure
"
m Suppose we know the following:
The flu causes sinus inflammation
Allergies cause sinus inflammation

Sinus inflammation causes a runny nose
Sinus inflammation causes headaches

m How are these connected?
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Possible queries
" J

(72N

m Inference
Pz [ N=4)

m Most probable
explanation

collection
B =t
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Car starts BN

18 binary attributes

m | Inference
P(BatteryAge|Starts=f) F(BA 3 :‘f)

N aV7‘,' el ¥ chon
F?(%Pf, Fx S F) = P(BA,S=¢ )

m 2%terms, why so fast?

m Not impressed?

—= HailFinder BN — more than 3% =
58149737003040059690390169 terms

Distributor

SparkPlugs



Factored joint distribution -
Preview
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Number of parameters

A’\ Par‘*" P(A‘/F, ‘gl /,}/A))

3 \Q“V&m -9 l\c\'\vxlcj ! ﬁ
3 P

sl FA: d pem) 0 (4) peF) Plelsa)
@ PUIS) - £gwls)
[0 (7‘*"‘-'\*\.

PILs):
L pon



Key: Independence assumptions
"
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Knowing sinus separates the variables from each other




(Marginal) Independence

m Flu and Allergy are (marginally) independent

P(FIA\: P(E). P(A)

m More Generally:

pLALE) = TPlA)

?(’gl/\\'-

Flu =t
Flu=f
Allergy =t
Allergy = f
Flu=t Flu=f
Allergy =t WA |
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Allergy = f




Marginally independent random
variables L e indyp.

m Sets of variables X, Y

m X Is independent of Y |f
P E(X=xjY=y), V xeVal(X), yeVal(Y)

/(,\‘l-ai‘j
m Shorthand: /
Marginal independence: PE (X LY)

—_—

m Proposition: P statisfies (X L Y) if and only if
P(X,Y) = P(X) P(Y)




Conditional independence
"
m Flu and Headache are not (marginally) independent
PFEIH) £PF) S e, PRttt P(F=4
m Flu and Headache are independent given Sinus

infection i ‘ ey
D(Fls,n) = PRI ey P(fP(eF(:sHS:;e)l

m More Generally:
PLEIS, u) =P (FL)
or

O(F, HIs) = o (fls) . Pais)



Conditionally independent random
variables

m Sets of variables X, Y, Z

m X is independent of Y given Z if
P E(X=x)Y=y|Z=2), V xeVal(X), yeVal(Y), zeVal(2)

m Shorthand:
Conditional independence: PE (X LY | Z2)

ForPE(XLY|0),writePE(XLY)
S

m Proposition: P statisfies (X L Y | Z) if and only If
P(X,Y|Z) = P(X|Z) P(Y|2)




Properties of independence
" A
B Symmetry:
XLY|Z)=(YLX]|2)
m Decomposition:
XLYW|Z)=(XLY]|2)
m WWeak union:
XLYW|Z)=XLY|ZW)
m Contraction:
XLWI|Y,2)&XLY|Z)=XLYW]|Z2)
m [ntersection:
XLY|W2Z2)&XLW]|Y,Z)=XLYW]|Z2)
Only for positive distributions!
P(a)>0, Vo, o0



The independence assumption
"

Local Markov Assumption:
@ A variable X i1s independent
of its non-descendants given

Its parents

Headache

[FLA)
(N 2{EANT L8]



Local Markov Assumption:

E)(_plaining aWay | A variable X is independent
" JE

of its non-descendants given
Its parents
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Nalve Bayes revisited

Local Markov Assumption:
A variable X is independent
of its non-descendants given

Its parents




What about probabilities?
__Conditional grobability tables (CPTs)
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Joint distribution
'_
PN
= P(F). P(sIEA).
H(S P(nIs)

Headache
1\’\()\4. Mﬂlﬁ - ’F?\(,\/ eV l’\cQQ(P &SW%(M} !

Why can we decompose”? Markov Assumption!



The chain rule of probabillities
" J

= P(A,B) = P(A)P(B|A) Pls) = p() ) Cru
- T adi= I

m More generally:
P(X,,..., Xrl) = \P_(il) POGIXY) - POKIX e, X )

—_—

POy )




Chain rule & Joint distribution
: Local Markov Assumption:

A variable X is independent
of its non-descendants given
Its parents
C hei A rule
F(F A S H, N = no ng«mf})M
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pL4) )
(FLA) D) paie) = P | Ahls

P(N/gj
\’("\ 'OC-«.\ MG\.&‘ku\, o

[HLGRA \) = P#1SFA) = PLHIS) " 4550,

lmmw&\\—wmwm)

0(F) 94 P(SIFA) PLRLS) P (uid
o(p15)




Two (trivial) special cases
'_-_M e

Edgeless graph 3 Fully-connected

il ’ graph
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The Representation Theorem —

Joint Distribution to BN
"

q

BN: Encodes independence
assumptions

~If conditional Joint probability
iIndependencies distribution:
In BN are subset of

~ conditional PO ) = [T P (X Pax)
: : : P can r‘”" V"-'Puii!h/(
independencies in P Codh RN

MO el af  lost one BN



Real Bayesian networks  4v -l

. applications e “Iplity
m Diagnosis of lymph node disease =~ ( protin Shc

m Speech recognition

m Microsoft office and Windows
http://www.research.microsoft.com/research/dtg/

m Study Human genome

m Robot mapping

m Robots to identify meteorites to study
Modeling fMRI data

Anomaly detection

Fault dianosis

Modeling sensor network data




A general Bayes net
"
m Set of random variables
%lj)(z,)(s o

. : O— O
m Directed acyclic graph \"O‘L
o
Encodes independence assumptions A
/%
= CPTs — PO {Pa)

m Joint distribution:

n , ‘
P(X1,.--,Xn) =[] P(Xi | PaXZ.)
1=1




How many parameters in a BN?
" J

m Discrete variables X, ..., X, 24- oo Wil =Kk
O Gra h Mo V&Y L\c‘b More +l\c.,.
p A PAV:A?"S.

Defines parents of X;, Pa, s <. K&(K )
| Vewma (L §s ~l .
m CPTs - P(X| Pay)) il ’

s (T PO I Pa) R AmEe
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Another example
" A
m Variables:
B — Burglar
E — Earthquake
A — Burglar alarm

N — Neighbor calls
R — Radio report

m Both burglars and earthquakes can set off the
alarm

m If the alarm sounds, a neighbor may call
m An earthguake may be announced on the radio



Another example — Building the BN

B — Burglar

E — Earthquake

A — Burglar alarm
N — Neighbor calls
R — Radio report



Independencies encoded in BN
" A
m We said: All you need is the local Markov
assumption
(X; L NonDescendants,; | Pay;)

m But then we talked about other (in)dependencies
e.g., explaining away

m \WWhat are the independencies encoded by a BN?
Only assumption is local Markov

But many others can be derived using the algebra of
conditional independencies!!!



Understanding independencies in BNs

— BNs with 3 nodes[Local markov Assumption:
" A A variable X is independent

of its non-descendants given

Indirect causal effect:;

OnOnO

Indirect evidential effect: Common effect:

- @\@/@

ofao

Its parents



Understanding independencies in BNs

— Some examples
o

@/@




An active trall — Example
" J

When are A and H independent?



Active trails formalized
"
m A path X;—-X,—---=X,Is an active trail when
variables OC{X,,...,X,} are observed If for each

consecutive triplet in the trall:
X ;—>X—>X.,1, and X; is not observed (X;zO)

X 1< Xi«—X., 1, and X; Is not observed (X,20)
X 1< Xi—>X.,1, and X; is not observed (X;zO)

X 1= X«X.,,,and X Is observed (X,€O), or one of
Its descendents



Active trails and independence?
" J

m Theorem: Variables X
and X; are independent
given ZC{X,...,X } If the
IS no active trail between
X; and X; when variables
ZC{X,,...,X,} are observed




The BN Representation Theorem

If conditional
Independencies

Joint probability

. distribution:
in BN are subset of

conditional

n
independencies in P P(Xy,..., Xn) = ,H1P<Xi | Pay,)
1=

Important because:
Every P has at least one BN structure G

Then conditional

If joint probability independencies
distribution: in BN are subset of
conditional

7L
X») = [ P(X;| Pax, . .
, Xn) }:11 (X: | Pax,) independencies in P

Important because:
Read independencies of P from BN structure G



“Simpler” BNs
" J
m A distribution can be represented by many BNSs:

m Simpler BN, requires fewer parameters



Learning Bayes nets
000

Known structure

Unknown structure

Fully observable
data

Missing data

B;

CPTs —
_I_ P(Xi| Pay;)

structure

parameters




Learning the CPTs

/ MLE: P(XZ:wZ|X]:£EJ)=

A For each discrete variable X

COUHt(Xi = LEZ',XJ' = w])

Cou nt(Xj = CUJ)



Queries In Bayes nets
" J
m Given BN, find:
Probability of X given some evidence, P(X|e)

Most probable explanation, max,

Most informative query

m Learn more about these next class



What you need to know
" J

m Bayesian networks

A compact representation for large probability distributions
Not an algorithm

m Semantics of a BN
Conditional independence assumptions

m Representation

Variables
Graph
CPTs

m Why BNs are useful
m Learning CPTs from fully observable data
m Play with applet!!! ©



Acknowledgements
"
m JavaBayes applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho
me/index.html
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