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Announcements 

� Welcome back!

� One page project proposal due Wednesday

� We’ll go over midterm in this week’s recitation



Handwriting recognition

Character recognition, e.g., kernel SVMs
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Webpage classification

Company home page

vs

Personal home page

vs

Univeristy home page

vs

…



Handwriting recognition 2



Webpage classification 2



Today – Bayesian networks

� One of the most exciting advancements in 
statistical AI in the last 10-15 years

� Generalizes naïve Bayes and logistic regression 
classifiers

� Compact representation for exponentially-large 
probability distributions

� Exploit conditional independencies



Causal structure

� Suppose we know the following:
� The flu causes sinus inflammation
� Allergies cause sinus inflammation
� Sinus inflammation causes a runny nose
� Sinus inflammation causes headaches

� How are these connected?



Possible queries

Flu Allergy

Sinus

Headache Nose

� Inference

� Most probable 
explanation

� Active data 
collection



Car starts BN

� 18 binary attributes

� Inference 
� P(BatteryAge|Starts=f)

� 218 terms, why so fast?
� Not impressed?

� HailFinder BN – more than 354 = 
58149737003040059690390169 terms



Factored joint distribution -
Preview

Flu Allergy

Sinus

Headache Nose



Number of parameters

Flu Allergy

Sinus

Headache Nose



Key: Independence assumptions

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other



(Marginal) Independence

� Flu and Allergy are (marginally) independent

� More Generally:

Flu = t Flu = f

Allergy = t

Allergy = f

Allergy = t

Allergy = f

Flu = t

Flu = f



Marginally independent random 
variables
� Sets of variables X, Y
� X is independent of Y if

� P ²(X=x|Y=y), ∀ x∈Val(X), y∈Val(Y)

� Shorthand:
�Marginal independence: P ² (X ⊥ Y)

� Proposition: P statisfies (X ⊥ Y) if and only if
� P(X,Y) = P(X) P(Y)



Conditional independence

� Flu and Headache are not (marginally) independent

� Flu and Headache are independent given Sinus 
infection

� More Generally:



Conditionally independent random 
variables
� Sets of variables X, Y, Z
� X is independent of Y given Z if

� P ²(X=x,Y=y|Z=z), ∀ x∈Val(X), y∈Val(Y), z∈Val(Z)

� Shorthand:
� Conditional independence: P ² (X ⊥ Y | Z)
� For P ² (X ⊥ Y | ∅), write P ² (X ⊥ Y)

� Proposition: P statisfies (X ⊥ Y | Z) if and only if
� P(X,Y|Z) = P(X|Z) P(Y|Z)



Properties of independence

� Symmetry:
� (X ⊥ Y | Z) ⇒ (Y ⊥ X | Z)

� Decomposition:
� (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z)

� Weak union:
� (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z,W)

� Contraction: 
� (X ⊥ W | Y,Z) & (X ⊥ Y | Z) ⇒ (X ⊥ Y,W | Z)

� Intersection:
� (X ⊥ Y | W,Z) & (X ⊥ W | Y,Z) ⇒ (X ⊥ Y,W | Z)
�Only for positive distributions!
� P(α)>0, ∀α, α≠∅



The independence assumption 

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 



Explaining away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 



Naïve Bayes revisited

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 



What about probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Headache Nose



Joint distribution

Flu Allergy

Sinus

Headache Nose

Why can we decompose? Markov Assumption!



The chain rule of probabilities

� P(A,B) = P(A)P(B|A)

� More generally:
� P(X1,…,Xn) = P(X1) · P(X2|X1) · … · P(Xn|X1,…,Xn-1)

Flu

Sinus



Chain rule & Joint distribution
Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 

Flu Allergy

Sinus

Headache Nose



Two (trivial) special cases

Edgeless graph Fully-connected 
graph



The Representation Theorem –
Joint Distribution to BN

Encodes independence
assumptions

BN:

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P



Real Bayesian networks 
applications
� Diagnosis of lymph node disease
� Speech recognition
� Microsoft office and Windows

� http://www.research.microsoft.com/research/dtg/
� Study Human genome
� Robot mapping
� Robots to identify meteorites to study
� Modeling fMRI data
� Anomaly detection
� Fault dianosis
� Modeling sensor network data



A general Bayes net

� Set of random variables

� Directed acyclic graph 
� Encodes independence assumptions

� CPTs

� Joint distribution:



How many parameters in a BN?

� Discrete variables X1, …, Xn

� Graph
� Defines parents of Xi, PaXi

� CPTs – P(Xi| PaXi)



Another example

� Variables:
� B – Burglar
� E – Earthquake 
� A – Burglar alarm
� N – Neighbor calls
� R – Radio report

� Both burglars and earthquakes can set off the 
alarm

� If the alarm sounds, a neighbor may call
� An earthquake may be announced on the radio



Another example – Building the BN

� B – Burglar
� E – Earthquake 
� A – Burglar alarm
� N – Neighbor calls
� R – Radio report



Independencies encoded in BN

� We said: All you need is the local Markov 
assumption
� (Xi ⊥ NonDescendantsXi | PaXi)

� But then we talked about other (in)dependencies
� e.g., explaining away

� What are the independencies encoded by a BN?
�Only assumption is local Markov
� But many others can be derived using the algebra of 

conditional independencies!!!



Understanding independencies in BNs
– BNs with 3 nodes Local Markov Assumption:

A variable X is independent
of its non-descendants given 
its parents 

Z YX

Indirect causal effect:

Z

YX
Z YX

Indirect evidential effect: Common effect:

Z
YX

Common cause:



Understanding independencies in BNs
– Some examples

A

H

C
E

G

D

B

F

K

J

I



An active trail – Example

A HC
E G

DB F

F’’

F’

When are A and H independent?



Active trails formalized

� A path X1 – X2 – · · · –Xk is an active trail when 
variables O⊆{X1,…,Xn} are observed if for each 
consecutive triplet in the trail:
� Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

� Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

� Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

� Xi-1→Xi←Xi+1, and Xi is observed (Xi∈O), or one of 
its descendents 



Active trails and independence?

A

H

C
E

G

D

B

F

K

J

I

� Theorem: Variables Xi
and Xj are independent 
given Z⊆{X1,…,Xn} if the 
is no active trail between 
Xi and Xj when variables 
Z⊆{X1,…,Xn} are observed



The BN Representation Theorem

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

Important because: 
Every P has at least one BN structure G

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Important because: 
Read independencies of P from BN structure G



“Simpler” BNs

� A distribution can be represented by many BNs:

� Simpler BN, requires fewer parameters



Learning Bayes nets
Known structure Unknown structure

Fully observable 
data
Missing data

x(1)

…
x(m)

Data
CPTs –
P(Xi| PaXi)

structure parameters



Learning the CPTs

x(1)

…
x(m)

Data
For each discrete variable Xi



Queries in Bayes nets

� Given BN, find:
� Probability of X given some evidence, P(X|e)

�Most probable explanation, maxx1,…,xn
P(x1,…,xn | e) 

�Most informative query

� Learn more about these next class



What you need to know

� Bayesian networks
� A compact representation for large probability distributions 
� Not an algorithm

� Semantics of a BN
� Conditional independence assumptions

� Representation
� Variables
� Graph
� CPTs

� Why BNs are useful
� Learning CPTs from fully observable data
� Play with applet!!! ☺



Acknowledgements

� JavaBayes applet
� http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho

me/index.html
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