# Machine Learning, Function Approximation and Version Spaces

Recommended reading: Mitchell, Chapter 2

Machine Learning 10-701

Tom M. Mitchell
Center for Automated Learning and Discovery
Carnegie Mellon University

January 10, 2005

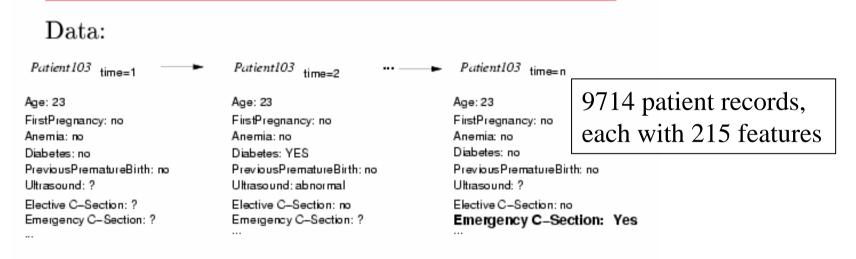
# Machine Learning:

Study of algorithms that

- improve their <u>performance</u>
- at some task
- with <u>experience</u>

# Learning to Predict Emergency C-Sections

[Sims et al., 2000]



#### One of 18 learned rules:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission
Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,

Over test data: 12/20 = .60

# **Object Detection**

(Prof. H. Schneiderman)

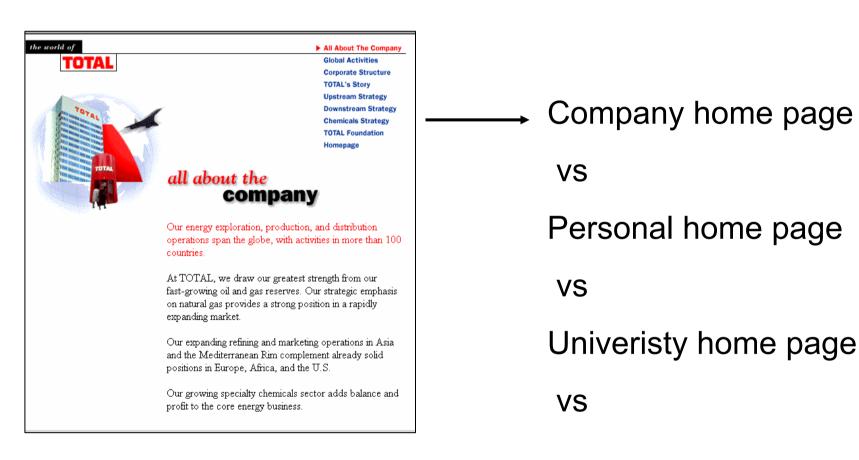




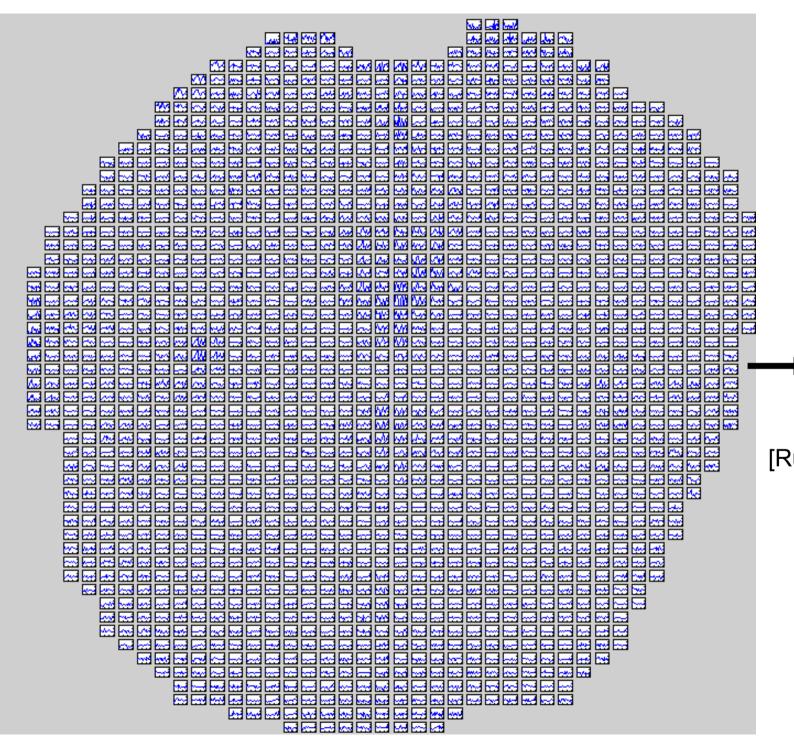
Example training images for each orientation



# **Text Classification**



. . .



Reading a noun (vs verb)

[Rustandi et al., 2005]

# **Growth of Machine Learning**

- Machine learning is preferred approach to
  - Speech recognition, Natural language processing
  - Computer vision
  - Medical outcomes analysis
  - Robot control
  - **—** ...
- This trend is accelerating
  - Improved machine learning algorithms
  - Improved data capture, networking, faster computers
  - Software too complex to write by hand
  - New sensors / IO devices
  - Demand for self-customization to user, environment

## Training Examples for EnjoySport

C: < Sky, Temp, Humid, Wind, Water, Forecst > → EnjoySpt

| Sky   | Temp         | Humid                 | Wind   | Water                 | Forecst         | EnjoySpt |
|-------|--------------|-----------------------|--------|-----------------------|-----------------|----------|
| Sunny | Warm         | Normal                | Strong | Warm                  | Same            | Yes      |
| Sunny | Warm         | $\operatorname{High}$ | Strong | $\operatorname{Warm}$ | $\mathbf{Same}$ | Yes      |
| Rainy | Cold         | $\operatorname{High}$ | Strong | Warm                  | Change          | No       |
| Sunny | ${\rm Warm}$ | $\operatorname{High}$ | Strong | Cool                  | Change          | Yes      |

What is the general concept?

# **Function Approximation**

## **Given:**

- Instances X:
  - e.g. x = <0,1,1,0,0,1>
- Hypotheses H: set of functions h: X → {0,1}
  - e.g., H is the set of all boolean functions defined by conjunctions of constraints on the features of x. (such as  $<0,1,?,?,1>\rightarrow 1$ )
- Training Examples D: sequence of positive and negative examples of an unknown target function c:  $X \rightarrow \{0,1\}$

$$- < x_1, c(x_1) >, ... < x_m, c(x_m) >$$

## **Determine:**

A hypothesis h in H such that h(x)=c(x) for all x in X

# **Function Approximation**

## **Given:**

- Instances X:
  - e.g. x = <0,1,1,0,0,1>
- Hypotheses H: set of functions h:  $X \rightarrow \{0,1\}$ 
  - e.g., H is the set of all boolean functions defined by conjunctions of constraints on the features of x. (such as  $<0,1,?,?,1>\rightarrow 1$ )
- Training Examples D: sequence of positive and negative examples of an unknown target function c:  $X \rightarrow \{0,1\}$

$$- < x_1, c(x_1)>, ... < x_m, c(x_m)>$$

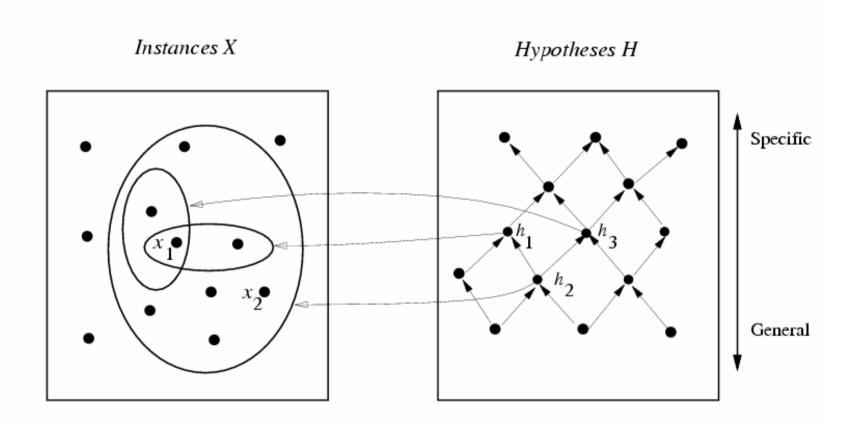
What we want

## **Determine:**

- A hypothesis h in H such that h(x)=c(x) for all x in X
- A hypothesis h in H such that h(x)=c(x) for all x in D what we can observe

# Here draw instance space, hypothesis space figure

## Instances, Hypotheses, and More-General-Than



$$x_1$$
=   $x_2$ = 

$$h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$$
  
 $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$   
 $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$ 

# Simplifying Assumptions for today (only)

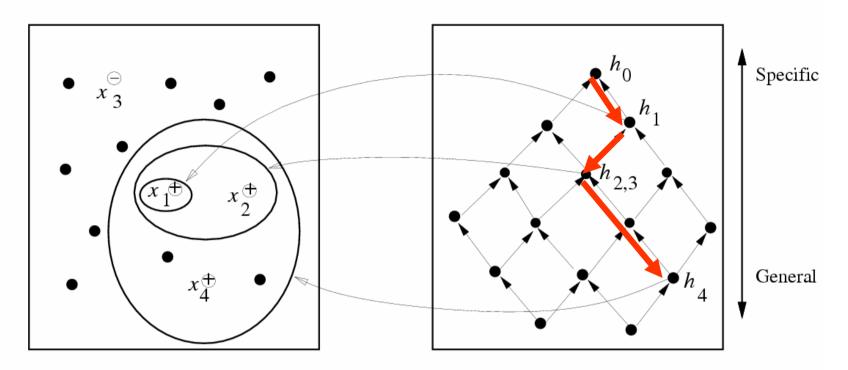
- Target function c is deterministic
- Target function c is contained in hypotheses H
- Training data is error-free, noise-free

## Find-S **Algorithm**

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
  - For each attribute constraint  $a_i$  in hIf the constraint  $a_i$  in h is satisfied by xThen do nothing Else replace  $a_i$  in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

#### Instances X

#### Hypotheses H



 $x_1 = \langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle, +$   $x_2 = \langle Sunny\ Warm\ High\ Strong\ Warm\ Same \rangle, +$   $x_3 = \langle Rainy\ Cold\ High\ Strong\ Warm\ Change \rangle, x_4 = \langle Sunny\ Warm\ High\ Strong\ Cool\ Change \rangle, +$ 

$$h_0 = \langle \phi, \phi, \phi, \phi, \phi, \phi \rangle$$

 $h_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$ 

 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$ 

 $h_3 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$ 

 $h_4 = \langle Sunny \ Warm \ ? \ Strong \ ? \ ? \rangle$ 

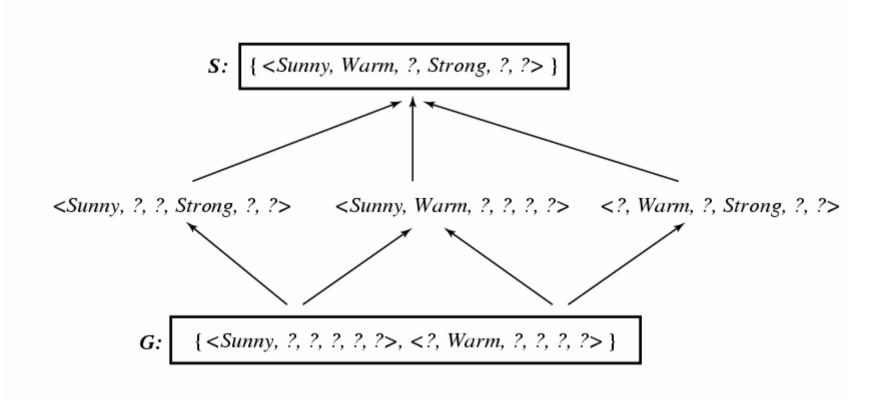
# Problems with Find-S

- Finds just one of the many h's in H that fit the training data
  - the most specific one
- Can't determine when learning has converged to the final h

## The List-Then-Eliminate Algorithm:

- 1.  $VersionSpace \leftarrow$  a list containing every hypothesis in H
- 2. For each training example,  $\langle x, c(x) \rangle$ remove from VersionSpace any hypothesis h for which  $h(x) \neq c(x)$
- 3. Output the list of hypotheses in VersionSpace

## Version Space for our EnjoySport problem



## Representing Version Spaces

The **General boundary**, G, of version space  $VS_{H,D}$  is the set of its maximally general members

The **Specific boundary**, S, of version space  $VS_{H,D}$  is the set of its maximally specific members

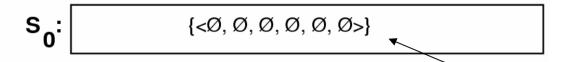
Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \ge h \ge s) \}$$

where  $x \ge y$  means x is more general or equal to y

## Version Space Candidate Elimination Algorithm

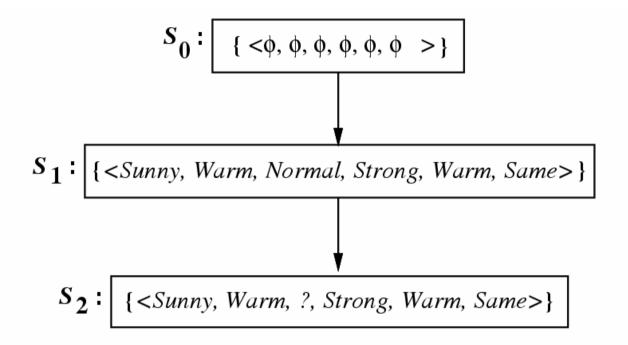
- Initialize S (G) to maximally specific (general) h's in H
- For each training example <x,c(x)>
  - if positive example <x,1>
    - Generalize S as much as needed to cover x, in all possible ways
    - Remove any h ∈ G, for which h(x)≠1
  - if negative example <x,0>
    - Specialize G as much as needed to exclude x, in all possible ways
    - Remove any h ∈ S for which h(x)=1
  - Retain only members of G that are more general than some member of S
  - Retain only members of S that are more general than some member of G



Matches NO instances

$$G_0$$
:

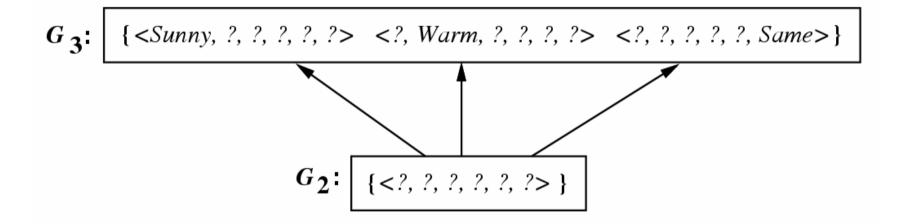
{<?, ?, ?, ?, ?, ?>}



$$G_0$$
,  $G_1$ ,  $G_2$ : {, ?, ?, ?, ?, ?}

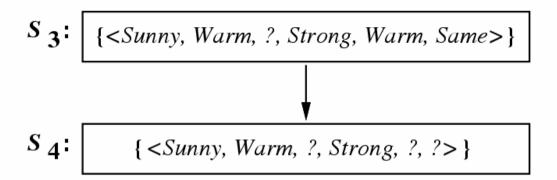
## Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes



Training Example:

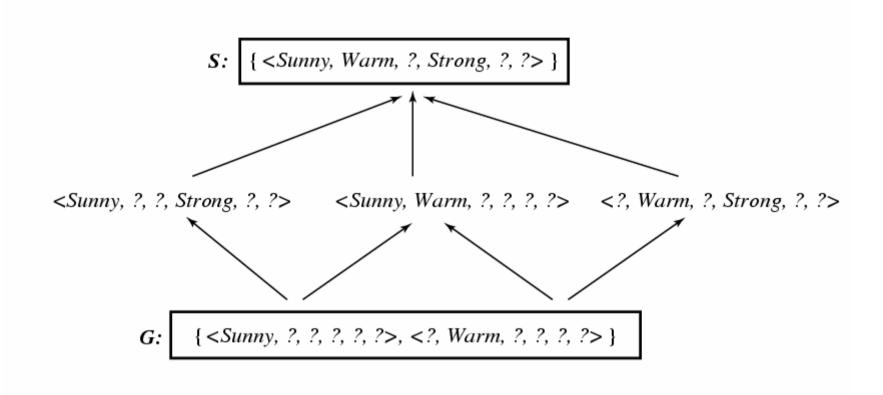
3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No



### Training Example:

4. <Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

# Version Space after all four examples



## Machine Translation Example [Probst et al., 2003]

```
;; Hebrew Transfer Rule Example
English: the big boy
Hebrew: ha yeled ha gadol
NP::NP: [DET ADJ N] -> [DET N DET ADJ]
;;X-Y Alignment
(X1::Y1)
(X1::Y3)
(X2::Y4)
(X3::Y2)
::X-side constraints
((X1 \text{ NUMBER}) = (X3 \text{ NUMBER}))
((X1 DEFINITENESS) = +)
;;Y-side constraints
((Y2 \text{ NUMBER}) = (Y4 \text{ NUMBER}))
((Y2 \text{ GENDER}) = (Y4 \text{ GENDER}))
::X-Y constraints
((X0 \text{ NUMBER}) = (Y0 \text{ NUMBER}))
((X0 DEFINITENESS) = (Y0 DEFINITENESS))
```

Figure 1: Sample transfer rule for English to Hebrew.

Seeded VS Learning [Probst et al., 2003]:

Construct VS around a seed positive example.

Include only
hypotheses at a
predetermined level
of generalization, ± *k*levels in the partial
order.

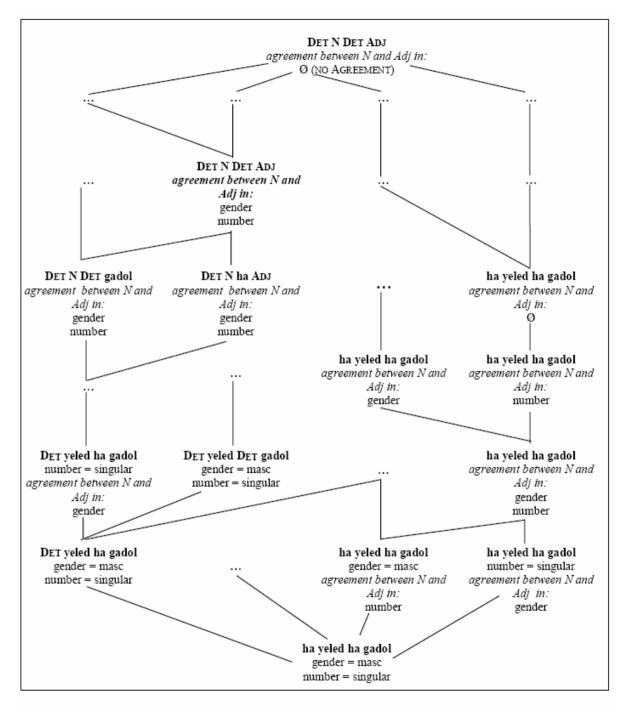
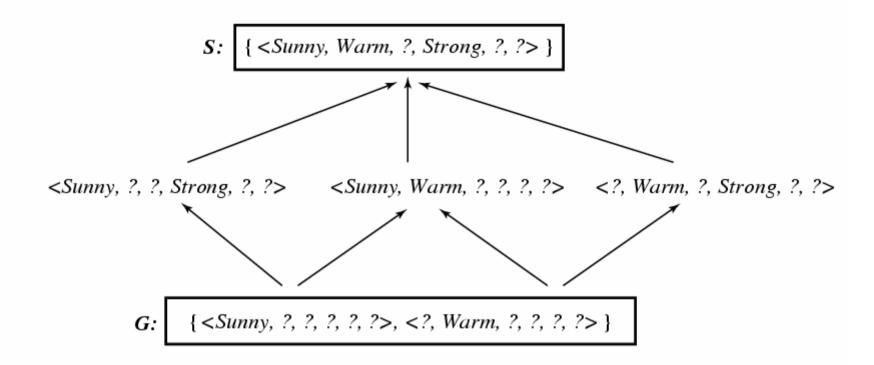
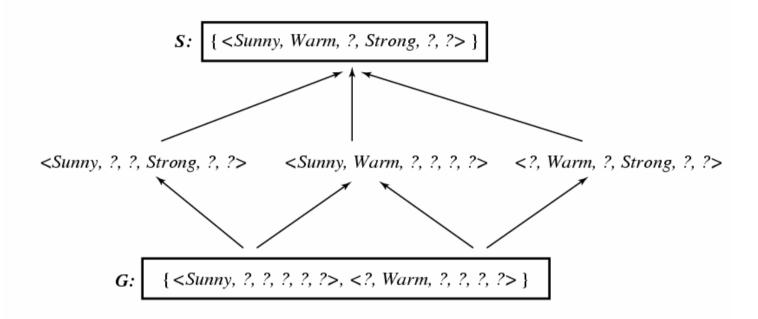


Figure 2: Partial representation of the version space for the example given in figure 1.

## What Next Training Example?



## How Should These Be Classified?



(Sunny Warm Normal Strong Cool Change)

 $\langle Rainy\ Cool\ Normal\ Light\ Warm\ Same \rangle$ 

⟨Sunny Warm Normal Light Warm Same⟩

## What Justifies this Inductive Leap?

- + \(\langle Sunny Warm Normal Strong Cool Change \rangle \)
- +  $\langle Sunny Warm Normal Light Warm Same \rangle$

 $S: \langle Sunny \ Warm \ Normal ? ? ? \rangle$ 

Why believe we can classify the unseen?

 $\langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$ 

## An UNBiased Learner

Idea: Choose H that expresses every teachable concept (i.e., H is the power set of X)

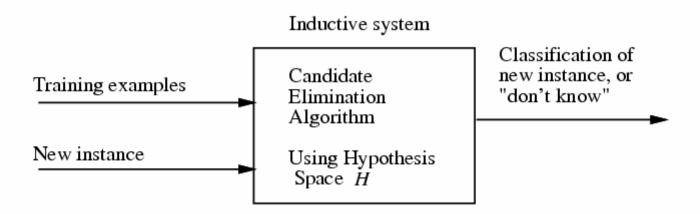
Consider H' = disjunctions, conjunctions, negations over previous H. E.g.,

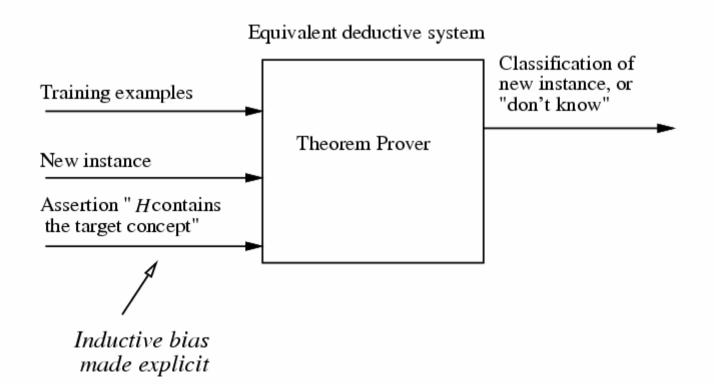
 $\langle Sunny Warm Normal??? \rangle \lor \neg \langle ??????Change \rangle$ 

What are S, G in this case?

$$S \leftarrow$$

$$G \leftarrow$$





## What you should know:

- Well posed function approximation problem:
  - Instance space, X
  - Hypothesis space, H
  - Sample of training data, D
- Learning as search/optimization over H
  - Various objective functions
- Sample complexity of learning
  - How many examples needed to converge?
  - Depends on H, how examples generated, notion of convergence
- Biased and unbiased learners
  - Futility of unbiased learning