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What about continuous hypothesis
spaces?

 Continuous hypothesis space:
 |H| = ∞
 Infinite variance???

 As with decision trees, only care about the
maximum number of points that can be
classified exactly!
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How many points can a linear
boundary classify exactly? (1-D)
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How many points can a linear
boundary classify exactly? (2-D)
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How many points can a linear
boundary classify exactly? (d-D)
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
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Shattering a set of points
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VC dimension
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
 Bound for infinite dimension hypothesis spaces:
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Examples of VC dimension

 Linear classifiers:
 VC(H) = d+1, for d features plus constant term b

 Neural networks
 VC(H) = #parameters
 Local minima means NNs will probably not find best

parameters

 1-Nearest neighbor?
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Another VC dim. example -
What can we shatter?
 What’s the VC dim. of decision stumps in 2d?
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Another VC dim. example -
What can’t we shatter?
 What’s the VC dim. of decision stumps in 2d?
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What you need to know

 Finite hypothesis space
 Derive results
 Counting number of hypothesis
 Mistakes on Training data

 Complexity of the classifier depends on number of
points that can be classified exactly
 Finite case – decision trees
 Infinite case – VC dimension

 Bias-Variance tradeoff in learning theory
 Remember: will your algorithm find best classifier?
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Bayesian Networks –
Representation

Machine Learning – 10701/15781
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Handwriting recognition

Character recognition, e.g., kernel SVMs
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Webpage classification

Company home page

 vs

Personal home page

 vs

University home page

 vs

…
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Handwriting recognition 2
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Webpage classification 2
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Today – Bayesian networks

 One of the most exciting advancements in
statistical AI in the last 10-15 years

 Generalizes naïve Bayes and logistic regression
classifiers

 Compact representation for exponentially-large
probability distributions

 Exploit conditional independencies
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Causal structure

 Suppose we know the following:
 The flu causes sinus inflammation
 Allergies cause sinus inflammation
 Sinus inflammation causes a runny nose
 Sinus inflammation causes headaches

 How are these connected?
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Possible queries

Flu Allergy

Sinus

Headache Nose

 Inference

 Most probable
explanation

 Active data
collection
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Car starts BN

 18 binary attributes

 Inference
 P(BatteryAge|Starts=f)

 216 terms, why so fast?
 Not impressed?

 HailFinder BN – more than 354 =
58149737003040059690390169 terms
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Factored joint distribution -
Preview

Flu Allergy

Sinus

Headache Nose
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Number of parameters

Flu Allergy

Sinus

Headache Nose
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Key: Independence assumptions

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other
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(Marginal) Independence

 Flu and Allergy are (marginally) independent

 More Generally:

Allergy = f

Allergy = t

Flu = fFlu = t

Allergy = f

Allergy = t

Flu = f

Flu = t
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Marginally independent random
variables

 Sets of variables X, Y
 X is independent of Y if

 P ²(X=x⊥Y=y), 8 x2Val(X), y2Val(Y)

 Shorthand:
 Marginal independence: P ² (X ⊥ Y)

 Proposition: P statisfies (X ⊥ Y) if and only if
 P(X,Y) = P(X) P(Y)
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Conditional independence

 Flu and Headache are not (marginally) independent

 Flu and Headache are independent given Sinus
infection

 More Generally:
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Conditionally independent random
variables

 Sets of variables X, Y, Z
 X is independent of Y given Z if

 P ²(X=x ⊥ Y=y|Z=z), 8 x2Val(X), y2Val(Y), z2Val(Z)

 Shorthand:
 Conditional independence: P ² (X ⊥ Y | Z)
 For P ² (X ⊥ Y | ;), write P ² (X ⊥ Y)

 Proposition: P statisfies (X ⊥ Y | Z) if and only if
 P(X,Y|Z) = P(X|Z) P(Y|Z)
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Properties of independence

 Symmetry:
 (X ⊥ Y | Z) ⇒ (Y ⊥ X | Z)

 Decomposition:
 (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z)

 Weak union:
 (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z,W)

 Contraction:
 (X ⊥ W | Y,Z) & (X ⊥ Y | Z) ⇒ (X ⊥ Y,W | Z)

 Intersection:
 (X ⊥ Y | W,Z) & (X ⊥ W | Y,Z) ⇒ (X ⊥ Y,W | Z)
 Only for positive distributions!
 P(α)>0, 8α, α≠;
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The independence assumption

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Explaining away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Naïve Bayes revisited

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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What about probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Headache Nose
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Joint distribution

Flu Allergy

Sinus

Headache Nose

Why can we decompose? Markov Assumption!
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The chain rule of probabilities

 P(A,B) = P(A)P(B|A)

 More generally:
 P(X1,…,Xn) = P(X1) · P(X2|X1) · … · P(Xn|X1,…,Xn-1)

Flu

Sinus
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Chain rule & Joint distribution

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents
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Two (trivial) special cases

Edgeless graph Fully-connected 
graph
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The Representation Theorem –
Joint Distribution to BN

Joint probability
distribution:Obtain

BN: Encodes independence
assumptions

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

©2005-2007 Carlos Guestrin 40

Real Bayesian networks
applications

 Diagnosis of lymph node disease
 Speech recognition
 Microsoft office and Windows

 http://www.research.microsoft.com/research/dtg/
 Study Human genome
 Robot mapping
 Robots to identify meteorites to study
 Modeling fMRI data
 Anomaly detection
 Fault dianosis
 Modeling sensor network data
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A general Bayes net

 Set of random variables

 Directed acyclic graph
 Encodes independence assumptions

 CPTs

 Joint distribution:

©2005-2007 Carlos Guestrin 42

How many parameters in a BN?

 Discrete variables X1, …, Xn

 Graph
 Defines parents of Xi, PaXi

 CPTs – P(Xi| PaXi)
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Another example

 Variables:
 B – Burglar
 E – Earthquake
 A – Burglar alarm
 N – Neighbor calls
 R – Radio report

 Both burglars and earthquakes can set off the
alarm

 If the alarm sounds, a neighbor may call
 An earthquake may be announced on the radio
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Another example – Building the BN

 B – Burglar
 E – Earthquake
 A – Burglar alarm
 N – Neighbor calls
 R – Radio report
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Independencies encoded in BN

 We said: All you need is the local Markov
assumption
 (Xi ⊥ NonDescendantsXi | PaXi)

 But then we talked about other (in)dependencies
 e.g., explaining away

 What are the independencies encoded by a BN?
 Only assumption is local Markov
 But many others can be derived using the algebra of

conditional independencies!!!
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Understanding independencies in BNs
– BNs with 3 nodes

Z

YX

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents

Z YX

Z YX

Z
YX

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:
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Understanding independencies in BNs
– Some examples

A

H

C
E

G

D

B

F

K

J

I
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An active trail – Example

A HC
E G

DB F

F’’

F’

When are A and H independent?
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Active trails formalized

 A path X1 – X2 – · · · –Xk is an active trail when
variables Oµ{X1,…,Xn} are observed if for each
consecutive triplet in the trail:
 Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

 Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

 Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

 Xi-1→Xi←Xi+1, and Xi is observed (Xi2O), or one of
its descendents
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Active trails and independence?

 Theorem: Variables Xi
and Xj are independent
given Zµ{X1,…,Xn} if the
is no active trail between
Xi and Xj when variables
Zµ{X1,…,Xn} are observed

A

H

C
E

G

D

B

F

K

J

I
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The BN Representation Theorem

If joint
probability

distribution:
Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of
conditional

independencies in P

Important because: 
Every P has at least one BN structure G

Important because: 
Read independencies of P from BN structure G

©2005-2007 Carlos Guestrin 52

“Simpler” BNs

 A distribution can be represented by many BNs:

 Simpler BN, requires fewer parameters
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Learning Bayes nets

Missing data

Fully observable
data

Unknown structureKnown structure

x(1)

…
 x(m)

Data

structure parameters

CPTs –
P(Xi| PaXi)
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Learning the CPTs

x(1)

…
 x(m)

Data
For each discrete variable Xi
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Queries in Bayes nets

 Given BN, find:
 Probability of X given some evidence, P(X|e)

 Most probable explanation, maxx1,…,xn
 P(x1,…,xn | e)

 Most informative query

 Learn more about these next class
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What you need to know
 Bayesian networks

 A compact representation for large probability distributions
 Not an algorithm

 Semantics of a BN
 Conditional independence assumptions

 Representation
 Variables
 Graph
 CPTs

 Why BNs are useful
 Learning CPTs from fully observable data
 Play with applet!!! 
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Acknowledgements

 JavaBayes applet
 http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho

me/index.html


